Polyhydroxyalkanoate (PHA) production from waste

2003 ◽  
Vol 48 (8) ◽  
pp. 221-228 ◽  
Author(s):  
D.H. Rhu ◽  
W.H. Lee ◽  
J.Y. Kim ◽  
E. Choi

PHA (polyhydroxyalkanoate) production was attempted with SBRs from food waste. Seed microbes were collected from a sewage treatment plant with a biological nutrient removal process, and acclimated with synthetic substrate prior to the application of the fermented food waste. Laboratory SBRs were used to produce PHA with limited oxygen and nutrients. The maximum content of 51% PHA was obtained with an anaerobic/aerobic cycle with P limitation, and the yield was estimated to be about 0.05 gPHAproduced/gCODapplied or 25 kg PHA/dry ton of food waste, assuming more than 40% of the PHA contents were recoverable. PHB/PHA ratios were 0.74 to 0.77 due to the higher acetate concentrations. Economical analysis seemed to suggest the PHA produced from the food waste could be an alternative material to produce the biodegradable plastic to be used for the collection bags for solid waste.

2001 ◽  
Vol 43 (11) ◽  
pp. 109-117 ◽  
Author(s):  
D. Bixio ◽  
P. van Hauwermeiren ◽  
C. Thoeye ◽  
P. Ockier

The municipal sewage treatment plant (STP) of the city of Ghent (Belgium) has to be retrofitted to a 43%-increase in the nitrogen treatment capacity and to phosphorus removal. Cold weather, dilute sewage and a critical COD over N ratio make the retrofit a challenge for full biological nutrient removal. The potential for fermentation of primary sludge to alter those critical feed sewage characteristics was experimentally evaluated. The idea was that the pinpoint introduction of fermentate could optimise the available reactors by achieving high-rate denitrification and enhanced biological phosphorus removal. The fermentation process was evaluated with a bench scale apparatus. At 20°C (heated process), the hydrolysis yield - expressed in terms of soluble COD - varied from 11% to 24% of the total sludge COD. The fermentation yield expressed in VFA COD varied from 8% to 13% of the total sludge COD. The efficiency of heated fermentation of primary sludge was lower during cold and wet weather, due to the different sewage characteristics, as a result of extended dilution periods and low temperature. The raw sewage, the primary effluent and the fermentate were fractionated according to the requirements for the IAWQ Activated Sludge Model No. 2d. The results clearly show that fermentation in the sewer played an important role and temperature was the driving parameter for the characteristics of the dissolved COD. Instead, the weather flow conditions were the driving parameter for the characteristics of the suspended COD. The results of the detailed fractionation were used as background for process evaluation. The final scenario choice for the retrofit depends on a cost-efficiency calculation.


2021 ◽  
Vol 333 ◽  
pp. 12002
Author(s):  
Regina Damalerio ◽  
Aileen Orbecido ◽  
Michael Angelo Promentilla ◽  
Ramon Christian Eusebio ◽  
Liza Patacsil ◽  
...  

Water utilities, commercial and industrial establishments are required to upgrade or install new treatment systems to comply with the revised effluent standards issued by the Department of Environment and Natural Resources – Environment Management Bureau (DENR – EMB) which now includes removal and monitoring of nutrients (nitrogen and phosphorus components). One solution is to utilize a biological nutrient removal technology (BNRT) system capable of removing nutrients from sewage. The on-going study aims to investigate the performance of the pilot-scale system in the removal of nutrients from sewage. The designed pilot-scale anaerobic-anoxic-oxic (A2O) process with a total hydraulic retention time of 8.37 hrs. was operated in an existing sewage treatment plant (STP). System modification was adapted to ensure continuous operation. Dissolved oxygen (DO) and temperature of each compartment were evaluated after 45 days of system modification. The DO of the anaerobic and oxic compartment remained within the required range, while the internal recycling flowrate and/or aeration must be adjusted to achieve a DO concentration of 0.20 – 0.50 mg/L in the anoxic compartment. The research is financially supported by the Philippine Council for Industry, Energy and Emerging Technology Research and Development of the Department of Science and Technology (PCIEERD Project No. 04176).


Author(s):  
K. Prempeh ◽  
B. Fei- Baffoe ◽  
B. W. Lawson

The increase in student population has led to a corresponding increase in the generation of waste on the Campus of the Kwame Nkrumah University of Science and Technology. Composting of the biodegradable portion of waste is seen as a better option to reduce the volume of waste and manage it at the same time. This study hence aimed to investigate the effect of some bulking materials on the quality of compost after the decomposition of the biodegradable portion of the waste generated. Bin composting was employed for this analysis. Composting was conducted over a 60 -day period at the sewage treatment plant on the KNUST Campus. Wastes comprising of food waste, sawdust, and grass clippings were mixed in ratios of 1:1, 1:2, and 2:1 (v/v) ratio for sawdust/food waste (SSD 1:1, SSD 1:2, SSD 2:1) and grass clipping/food waste (SGC 1:1, SGC 1:2, SGC 2:1). Turning of compost was done manually at three days interval during which the volume was also recorded. Temperatures were taken on daily basis, three times within a day at 8 am, 12 pm and 4 pm respectively. Volume of all bins reduced as percentage organic matter decreased leading to an increase in percentage ash to between 39. % and 64.5 %. Percent organic matter loss was highest in the grass clipping/food waste treatments compared to the sawdust/food waste treatments. By the end of eight weeks of analysis, the grass clipping/food (SGC 1:1, SGC 1:2, and SGC 2:1) waste formulations were seen to decompose faster than the sawdust/food (SSD 1:1, SSD 1:2, and SSD 2:1) waste formulation. The grass clipping/food waste ratios (especially the SGC 2:1) therefore gave better compost in terms of the quality since rate of decomposition was faster compared to the sawdust/food waste. 


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8045
Author(s):  
Pul-Eip Lee ◽  
Won-Bae Lee ◽  
Heesung Moon ◽  
Junhwa Kwon ◽  
Hueon Namkung ◽  
...  

Due to the ban on the use of food waste as wet swine feed after the outbreak of African swine fever (ASF), 2900 tons/day of food waste and 1083 tons/day of food waste leachate were additionally generated. As an alternative treatment method for food waste leachate, the input of food waste leachate on weekends (5% of food waste leachate inflow, 100 tons/day) and its increased input (merge ratio 21.7%, 227.01 tons/day → 27.8%, 453.71 tons/day) into the digesters operated in a public sewage treatment plant were investigated. Additionally, the feasibility of the method was evaluated by analyzing the operation parameters, evaluating the operation efficiency, and identifying other environmental effects on the sewage treatment plant. In the case of input on weekends, the organic matter decomposition rate and gas production rate decreased by 8.0% and 9.5%, respectively, although the input on weekends was judged to be feasible, considering that the inflow into the WWTP increased by up to 206% due to the long-term (7 weeks) monsoon. In the case of the increased input of food waste leachate, the organic matter decomposition and gas production rates increased by 2.5% and 4.8%, respectively, compared with before the increased input. The results of this study confirmed that the additional input of food waste leachate into existing biogasification facilities is feasible. When performed in a stable manner, the use of food waste for anaerobic digestion is considered an appropriate alternative treatment method to wet feed. This will lead to technological and industrial development.


2020 ◽  
Vol 15 (2) ◽  
pp. 142-151
Author(s):  
Peter Lukac ◽  
Lubos Jurik

Abstract:Phosphorus is a major substance that is needed especially for agricultural production or for the industry. At the same time it is an important component of wastewater. At present, the waste management priority is recycling and this requirement is also transferred to wastewater treatment plants. Substances in wastewater can be recovered and utilized. In Europe (in Germany and Austria already legally binding), access to phosphorus-containing sewage treatment is changing. This paper dealt with the issue of phosphorus on the sewage treatment plant in Nitra. There are several industrial areas in Nitra where record major producers in phosphorus production in sewage. The new wastewater treatment plant is built as a mechanicalbiological wastewater treatment plant with simultaneous nitrification and denitrification, sludge regeneration, an anaerobic zone for biological phosphorus removal at the beginning of the process and chemical phosphorus precipitation. The sludge management is anaerobic sludge stabilization with heating and mechanical dewatering of stabilized sludge and gas management. The aim of the work was to document the phosphorus balance in all parts of the wastewater treatment plant - from the inflow of raw water to the outflow of purified water and the production of excess sludge. Balancing quantities in the wastewater treatment plant treatment processes provide information where efficient phosphorus recovery could be possible. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. There are also two outflows - drainage of cleaned water to the recipient - the river Nitra - 9.9 kg Ptot/day and Ptot content in sewage sludge - about 120.3 kg Ptot/day - total 130.2 kg Ptot/day.


2008 ◽  
Vol 37 (2) ◽  
Author(s):  
Maciej Walczak

Changes of microbial indices of water quality in the Vistula and Brda rivers as a result of sewage treatment plant operationThis paper reports the results of studies of microbiological changes in the water quality of the Vistula and Brda rivers after the opening of sewage treatment plants in Bydgoszcz. The study involved determining the microbiological parameters of water quality. Based on the results obtained, it was found that the quality of the water in both rivers had improved decidedly after the opening of the plants, although an increased number of individual groups of microorganisms was found at the treated sewage outlet from one of the plants.


Sign in / Sign up

Export Citation Format

Share Document