Lamella separators in the upgrading of a large urban sewage treatment plant

2004 ◽  
Vol 50 (7) ◽  
pp. 205-212 ◽  
Author(s):  
G. Kolisch ◽  
G. Schirmer

Wupperverband is using lamella separators for the upgrading of its Kohlfurth sewage treatment plant that is currently in progress. The lamellae positioned at the outlet of the biological treatment stage already remove part of the biomass in the activation basin and prevent it from reaching the final clarification stage. This preliminary separation system reduces solids concentration in the biological treatment system without negative impact on final clarification and therefore also lowers the basin capacity needed, with positive effects on costs. This article gives an overview of the separation performance achieved.

Ecotoxicology ◽  
2016 ◽  
Vol 25 (10) ◽  
pp. 1849-1857 ◽  
Author(s):  
Dalel Belhaj ◽  
Khaled Athmouni ◽  
Bouthaina Jerbi ◽  
Monem Kallel ◽  
Habib Ayadi ◽  
...  

1988 ◽  
Vol 20 (4-5) ◽  
pp. 143-152 ◽  
Author(s):  
M. Tendaj-Xavier ◽  
J. Hultgren

Bromma sewage treatment plant is the second largest plant in Stockholm with a design flow of 160,000 m3/d. The wastewater is treated mechanically, chemically by pre-precipitation with ferrous sulphate, and biologically by the activated sludge process. The requirements for the plant are 8 mg BOD7/l, 0.4 mg P/l and 2 mg NH4+-N/l. The requirement for ammonia refers to the period July-October. In order to meet those rather stringent requirements, the biological step was expanded 3 years ago with 6 new sedimentation tanks. The 6 new tanks have the same area as the 6 old ones but they have only a depth of 3.7 m compared with the depth of the old tanks, 5.7 m. Experience from the first years of operation of the new tanks is that these tanks are more sensitive and less efficient than the older ones. It seems that the effluent suspended solids concentration from the old tanks is less influenced by rapid flow variations than the concentration in the effluent from the new secondary sedimentation tanks. During the nitrification period denitrification takes place to some degree in the secondary sedimentation tanks. This may cause loss of solids and it has been observed that the deeper old tanks usually produce an effluent of better quality and seem to be less influenced by denitrification than the new ones.


2013 ◽  
Vol 385-386 ◽  
pp. 857-861
Author(s):  
Xiao Ping Huang ◽  
Qi Xing Qing

On the basis of the computerized technological process control of sewage treatment in a urban sewage treatment plant in the Zone of Nanning, the author had brought forward a plan of PROFIBUS that based on automatic control system for sewage treatment, and designed the automatic control system diagram and the PROFIBUS network diagram for sewage treatment plant. At the same time, the author also made a study of techniques to control the sewage aeration, which was the most difficult problem in sewage treatment process. The fuzzy controller could indicate the changes of the water quality in treated sewage, effectively controlled the volume of aeration and then cut down the operation costs,it had produced good economic and social benefits.


2013 ◽  
Vol 361-363 ◽  
pp. 601-605
Author(s):  
Ji Ku Zhang ◽  
Yang Yang Li ◽  
Chen Zhang ◽  
Yan Bin Yang

By treating the secondary effluent of Sanbaotun sewage treatment plant in Fushun with the CS type UV Sterilizer, the experiment researches the influence on the removal rate which includes the factors of turbidity, chromaticity, initial E.coli concentration of raw water, UV dose. The results show that the turbidity does not influence on UV disinfection efficiency with the turbidity from 1.5NTU to 3.8NTU. In the low-dose UV disinfection process, the influent sewage turbidity should under 4NTU to ensure the disinfection efficiency. Low chromaticity does not affect the UV disinfection efficiency, with the influent sewage chromaticity is under 15 degrees.The initial E. coli has a certain impact on little doses of UV disinfection with the concentration from 175 × 104 A/ L to 230 × 104 A/ L, no impact on high doses of UV disinfection。


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Monika Suchowska-Kisielewicz ◽  
Ireneusz Nowogoński

AbstractDuring heavy precipitation, chemical and biological pollutants from urban and agricultural areas enter the waters from storm overflows as a result of infiltration and inflow, as well as via uncontrolled outflows from water treatment plants. Infiltration and inflow of rainwater into sewers is an especially popular and major worldwide problem. Climate forecasts indicate changes in climatic conditions towards an increase in the intensity and frequency of torrential rainfalls. It may therefore be assumed that the negative impact of rainwater on water quality will increase. This article attempts to address the question of the impact of pollution from wastewater introduced into water during rainy weather to the receiver. The assessment of the impact of rainfalls on a receiver was carried out on the basis of a simulation of pollution loads from sewage introduced into a river by storm overflows based on data from monitoring the amount of rainfall and simulating the operation of storm overflows using Environmental Protection Agency Storm Water Management Model (EPA SWMM). The obtained results were compared with the pollutant loads discharged at the same time from the sewage treatment plant (STP). In addition, the article assesses possible improvement solutions to reduce the negative impact of storm overflows on water.


Author(s):  
Ju-Hee Hong ◽  
Jun-Yeon Lee ◽  
Hyun-Ju Ha ◽  
Jin-Hyo Lee ◽  
Seok-Ryul Oh ◽  
...  

Levels of synthetic musk fragrances (SMFs) and various personal care products (PCPs) were measured in the Han River and its tributaries in Seoul, Korea. The most abundant SMF in all river and PCP samples was 4,6,6,7,8,8-hexamethyl-1,3,4,7-tetrahydrocyclopenta[g]isochromene (HHCB), followed by 1-(3,5,5,6,8,8-hexamethyl-6,7-dihydronaphthalen-2-yl)ethanone (AHTN), musk ketone (MK), and 1,1,2,3,3-pentamethyl-2,5,6,7-tetrahydroinden-4-one (DPMI). There was a significant correlation between the SMF concentration in the PCPs and the Han River samples. Moving from upstream to downstream in the Han River, the median SMF concentration was 6.756, 2.945, 0.304, and 0.141 μg/L in the sewage treatment plant (STP) influent, effluent, tributaries, and mainstream, respectively, implying that effective SMF removal was achieved during the sewage treatment process, followed by dilution in the receiving water. Four STPs using advanced biological treatment processes had removal efficiencies of 55.8%, 50.6%, 43.3% for HHCB, AHTN, and MK, respectively. The highest SMF concentrations in the tributaries were observed at locations close to the STPs. Our study confirmed that the main source of SMFs in the receiving water were sewage effluent containing untreated SMFs, which are largely originated from household PCPs, especially hair care products (e.g., shampoo) and perfumes.


Author(s):  
Andrea Lanzini ◽  
Pierluigi Leone ◽  
Massimo Santarelli

A biogas coming from anaerobic digestion of urban sewage has been used to feed a SOFC planar anode-supported cell. The sewage is produced from the urban area of Torino (IT), and eventually collected and treated by SMAT (the municipal company managing the potable and waste water of the city). The biogas is produced by the thermophilic fermentation of the sludge which remains after the several treatments the sewage goes through in the above-mentioned plant. The biogas is of a high quality: it has on average a a methane content around 65% (the balance being essentially CO2), and the only significant impurity measured is H2S in a range of 70–80 ppm. The as-produced biogas has been used for feeding a planar Ni-YSZ anode-supported SOFC with a LSCF cathode. The biogas desulphurization was accomplished flowing the gas in a fixed-bed reactor, filled with activated. The fuel processing with POX has been assessed to avoid carbon deposition into the Ni-YSZ anode and convert the CH4 into H2 and CO. Short tests to check for eventual anode degradation were performed under typical operating conditions. The cell voltage was always stable under load with the tested mixtures. A cell electrical efficiency around 45% has been measured at 800°C and 80% FU. System simulations have performed as well to assess the whole system configuration under a biogas feeding. Optimization routines have been implemented to predict the best net AC efficiency achievable by a SOFC system running on biogas. Additional considerations on the management of poor LHV biogas mixture have been also assessed, showing how dry-reforming of CH4 with the CO2 already available in the biogas stream would be an excellent option needed to be investigated with further detail in the next future.


Sign in / Sign up

Export Citation Format

Share Document