Computational fluid dynamic prediction of the residence time of a vortex separator applied to disinfection

2005 ◽  
Vol 52 (3) ◽  
pp. 29-36 ◽  
Author(s):  
D. Egarr ◽  
M.G. Faram ◽  
T. O'Doherty ◽  
D. Phipps ◽  
N. Syred

A Hydrodynamic Vortex Separator (HDVS) has been modelled using Computational Fluid Dynamics (CFD) in order to predict the residence time of the fluid at the overflow and underflow outlets. A technique which was developed for use in Heating, Ventilation and Air Conditioning (HVAC) was used to determine the residence time and the results have been compared with those determined experimentally. It is shown that in using CFD, it is possible to predict the mean residence time of the fluid and to study the response to a pulse injection of tracer. It is also shown that it is possible to apply these techniques to predict the mean survival rate of bacteria in a combined separation and disinfection process.

Author(s):  
D. A. Egarr ◽  
M. G. Faram ◽  
T O'Doherty ◽  
D. A. Phipps ◽  
N Syred

A hydrodynamic vortex separator (HDVS) has been modelled using computational fluid dynamics (CFD) in order to accurately determine the residence time of the fluid at the two outlets of the HDVS using a technique that was developed for use in heating, ventilation, and air conditioning (HVAC). The results have been compared with experimental data [1]. It is shown that, in using CFD, it is possible to study the response to a variety of inputs, and also to determine the mean residence time of the fluid within the separator. Although the technique used for determining the residence time was developed for use in HVAC, it is shown here to be applicable for the analysis of hydraulic systems, specifically, wastewater treatment systems.


Author(s):  
T O'Doherty ◽  
D A Egarr ◽  
M G Faram ◽  
I Guymer ◽  
N Syred

The fluid residence time characterization of a 3.4 m diameter hydrodynamic vortex separator (HDVS) has been carried out under laboratory conditions. Computational fluid dynamics (CFD) modelling has then been undertaken for the same conditions at which the experimental data were collected and validated against the experimental results, for which reasonable correspondence has been found. Using the results from the CFD modelling and batch inactivation results from the disinfection of secondary treated wastewater, it is shown that the theoretical performance of an HDVS as a contact vessel for disinfection can be determined and the practical applicability of an HDVS for disinfection is confirmed.


2013 ◽  
Vol 368-370 ◽  
pp. 599-602 ◽  
Author(s):  
Ian Hung ◽  
Hsien Te Lin ◽  
Yu Chung Wang

This study focuses on the performance of air conditioning design at the Dazhi Cultural Center and uses a computational fluid dynamics (CFD) simulation to discuss the differences in wind velocity and ambient indoor temperature between all-zone air conditioning design and stratified air conditioning design. The results have strong implications for air conditioning design and can improve the indoor air quality of assembly halls.


2013 ◽  
Vol 291-294 ◽  
pp. 1880-1883
Author(s):  
Li Ping Xiang

A numerical model to improve the air-conditioning system of vehicle cabin taking into the cabin air moisture and its transport by the airflow within the enclosure cabin is described. An efficient computational fluid dynamics(CFD) technique is using the “realisable” model. The temperature and humidity fields in the passenger cabin are investigated individually under having or no body moisture. The temperature in the vehicle cabin taking into account human moisture is lower than no taking into account moisture 0.5 °C. The human dispersing moisture effect significantly on the humidity, which lead to the humidity is elevating and the humidity in vehicle cabin is corresponded hygienic standard.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2237
Author(s):  
Jesús Valdés ◽  
Jorge Luis Domínguez-Juárez ◽  
Rufino Nava ◽  
Ángeles Cuán ◽  
Carlos M. Cortés-Romero

In this article, we describe a prototype photoreactor of which the geometrical configuration was obtained by Genetic Algorithms to maximize the residence time of the reactant gases. A gas reaction mixture of CO2:H2O (1:2 molar ratio) was studied from the fluid dynamic point of view. The two main features of this prototype reactor are the conical shape, which enhances the residence time as compared to a cylindrical shape reference reactor, and the inlet heights and position around the main chamber that enables turbulence and mass transfer control. Turbulence intensity, mixing capability, and residence time attributes for the optimized prototype reactor were calculated with Computational Fluid Dynamics (CFD) software and compared with those from a reference reactor. Turbulence intensity near the envisioned catalytic bed was one percentage point higher in the reference than in the optimized prototype reactor. Finally, the homogeneity of the mixture was guaranteed since both types of reactors had a turbulent regime, but for the prototype the CO2 mass fraction was found to be better distributed.


2020 ◽  
Vol 213 ◽  
pp. 03013
Author(s):  
Wei Lu ◽  
Yiwen Hu ◽  
Shenghan Zhou ◽  
Xin Zhang ◽  
Quan Yuan ◽  
...  

A computational fluid dynamics (CFD) model for the closed plant factory under artificial lighting has been developed in this study, the experimental verification of CFD model with the air velocity value was compared with the measured air temperature value. The results showed that the mean relative error of validation with the air velocity was 15%, and comparable with experimentally observed air temperature profile inside the plant factory with RMSE of 3% which show the utility of CFD to study plant factory microclimatic parameters.


2019 ◽  
Vol 11 (24) ◽  
pp. 7109 ◽  
Author(s):  
Jorge Molines ◽  
Arnau Bayon ◽  
M. Esther Gómez-Martín ◽  
Josep R. Medina

Background literature on the influence of parapets on the overtopping of mound breakwaters is limited. In this study, numerical tests were conducted using computational fluid dynamics (CFD) to analyze the influence of nine crown wall geometries (seven with parapets). The CFD model was implemented in OpenFOAM® and successfully validated with laboratory tests. A new estimator of the dimensionless mean wave-overtopping discharges (logQ) on structures with parapets is proposed. The new estimator depends on the estimation of logQ of the same structure without a parapet. The effects on wave overtopping of the parapet angle (εp), parapet width (wp), and parapet height (hp) were analyzed. Low values of εp and wp/hp ≈ 1 produced the highest parapet effectiveness to reduce the mean wave-overtopping discharges.


ROTASI ◽  
2019 ◽  
Vol 20 (4) ◽  
pp. 237
Author(s):  
MSK Tony Suryo Utomo ◽  
Eflita Yohana ◽  
Mauli Astuti Khoiriyah

Pengeringan merupakan proses perpindahan panas dan uap air secara simultan yang memerlukan energi panas untuk menguapkan kandungan air dari bahan yang akan dikeringkan. Penelitian ini dilakukan dengan cara simulasi. Produk yang dipilih untuk simulasi ini yaitu teh. Simulasi numerik perpindahan massa pada teh dilakukan dengan menempatkan material teh pada domain komputasi sebuah aliran eksternal. Penelitian ini bertujuan untuk menganalisis distribusi temperatur pada partikel teh dengan menggunakan Computational Fluid Dynamics (CFD) dan menganalisis pengaruh variasi kecepatan inlet dan temperatur inlet terhadap waktu pengeringan sehingga diperoleh metode pengeringan yang paling optimum pada pengeringan teh. Penurunan massa pada teh dihitung secara analitik dengan menggunakan persamaan laju penurunan massa. Teh dimodelkan dengan bentuk menyerupai silinder setelah dilakukan pelayuan untuk kemudian dikeringkan. Kecepatan masuk aliran udara dan temperatur masuk divariasikan sesuai dengan batas kecepatan minimum dan maksimum fluidisasi dan temperatur pengeringan teh untuk fluidized bed dryer. Waktu yang digunakan untuk menurunkan kadar air hingga 3% berdasarkan temperatur pada kecepatan 1,6 m/s secara berurutan adalah 354 s (880C), 300 s (930C), dan 256 s (980C). Sementara pada kecepatan 2,6 m/s waktu yag dibutuhkan adalah 277 s (880C), 234 s (930C), dan 200 s (980C) serta untuk kecepatan 3,6 m/s berturut-turut 235 s (880C), 199 s (930C), dan 169 s (980C). Untuk pengeringan teh lebih optimal dilakukan dengan menaikkan kececepatan masuk aliran fluida dibandingkan dengan menaikkan temperatur.


2014 ◽  
Vol 607 ◽  
pp. 193-196
Author(s):  
Li Hong Zhu ◽  
Rui He Wang ◽  
Yong Huang ◽  
Jing Yin Wang

Plugged tee is the easilyworn part of an exhaust pipe during air drilling because of the flow of the compressed air with the entrained cutting particles. The effects of the particle size on the erosion of the plugged tee are studied by computational fluid dynamics (CFD). Mathematical models of the flow of the compressed air with the entrained cutting particles through the plugged tee are built and imported into the CFD through embedding procedures. After boundary conditions and the parameter of the particle size are given, the motion paths of cuttings in the different particle size in the plugged tee and its effects on erosion of the plugged tee are obtained. Erosions in the plugged tee are mainly distributed in the wall of the buffer segment and the joints and mainly caused by the scope of the particle size of cuttings. The motion paths and the residence time of cuttings with different particle size are different, so the erosions of the joints and the buffer segment are different.


2017 ◽  
Vol 899 ◽  
pp. 142-147
Author(s):  
José Luiz Vieira Neto ◽  
Dilson David Luiz Costa ◽  
Leticia Vitareli Souza ◽  
Ricardo Francisco Pires ◽  
Davi Leonardo Souza ◽  
...  

In fertilizers industries the granulation is an essential operation to form pellets with good quality. The granular product has improved handling, hardness, solubility, resistance to segregation and meets requirements such as the size, shape and particle size distribution through appropriate manipulation of the process variables. There are several types of granulators, however, this work is intended to study a granulator known as rotating disk, which promotes agitation of the particles by rotating around its axis. Although these devices are used industrially, cannot be found in the literature many details about the fluid dynamics in these operations. To study the fluid dynamics behavior of these particles on a rotation disk was analyzed the variables: rotation axis and filling degree. It was verified the existence of flow regimes which depends on these variables: rolling, cascading and centrifugation. Also, it was evaluated the dynamic angle of repose, that characterizes the rolling regime. This work aimed to obtain results of fluid dynamics that describe the behavior of solids flowing in a rotating disk. Thus, to meet the objectives of this work, simulations was carried out through the techniques of Computational Fluid Dynamics (CFD) and Discrete Element (DEM) to evaluate different parameter values: restitution coefficient (η), friction coefficient (μ) and the coefficient of elasticity (k) of the linear model "spring-dashpot" to find a good set of parameters that characterizes this system.


Sign in / Sign up

Export Citation Format

Share Document