Upgrading of wastewater treatment plants for nutrient removal under optimal use of existing structures

2008 ◽  
Vol 57 (9) ◽  
pp. 1437-1443 ◽  
Author(s):  
S. Winkler ◽  
M. Gasser ◽  
W. Schättle ◽  
D. Kremmel ◽  
P. Kletzmayr ◽  
...  

Upgrading of wastewater treatment plants under maximum use of existing structures is often an important requirement, but also useful due to a number of aspects. Because of a change in legal effluent requirements, a number of plants in Austria, typically aged 20+ years, were required to be extended. The two stage activated sludge HYBRID®-process often provides an interesting design alternative for such plant upgrades, especially in case an anaerobic sludge treatment stage already exists. It provides high nutrient removal capacity at low area demand. The latter is especially important in cases where no or very limited extension area is available making it the key factor to preserve a site for future use. Based on two full stage case studies the adaptation of the plant layout, first operation results and a synthetic cost comparison to a conventional (single stage) plant extension are given.

2020 ◽  
Vol 15 (2) ◽  
pp. 142-151
Author(s):  
Peter Lukac ◽  
Lubos Jurik

Abstract:Phosphorus is a major substance that is needed especially for agricultural production or for the industry. At the same time it is an important component of wastewater. At present, the waste management priority is recycling and this requirement is also transferred to wastewater treatment plants. Substances in wastewater can be recovered and utilized. In Europe (in Germany and Austria already legally binding), access to phosphorus-containing sewage treatment is changing. This paper dealt with the issue of phosphorus on the sewage treatment plant in Nitra. There are several industrial areas in Nitra where record major producers in phosphorus production in sewage. The new wastewater treatment plant is built as a mechanicalbiological wastewater treatment plant with simultaneous nitrification and denitrification, sludge regeneration, an anaerobic zone for biological phosphorus removal at the beginning of the process and chemical phosphorus precipitation. The sludge management is anaerobic sludge stabilization with heating and mechanical dewatering of stabilized sludge and gas management. The aim of the work was to document the phosphorus balance in all parts of the wastewater treatment plant - from the inflow of raw water to the outflow of purified water and the production of excess sludge. Balancing quantities in the wastewater treatment plant treatment processes provide information where efficient phosphorus recovery could be possible. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. There are also two outflows - drainage of cleaned water to the recipient - the river Nitra - 9.9 kg Ptot/day and Ptot content in sewage sludge - about 120.3 kg Ptot/day - total 130.2 kg Ptot/day.


1990 ◽  
Vol 22 (7-8) ◽  
pp. 53-60 ◽  
Author(s):  
B. Rabinowitz ◽  
T. D. Vassos ◽  
R. N. Dawson ◽  
W. K. Oldham

A brief review of recent developments in biological nitrogen and phosphorus removal technology is presented. Guidelines are outlined of how current understanding of these two removal mechanisms can be applied in the upgrading of existing wastewater treatment plants for biological nutrient removal. A case history dealing with the upgrading of the conventional activated sludge process located at Penticton, British Columbia, to a biological nutrient removal facility with a design flow of 18,200 m3/day (4.0 IMGD) is presented as a design example. Process components requiring major modification were the headworks, bioreactors and sludge handling facilities.


1990 ◽  
Vol 22 (3-4) ◽  
pp. 211-216
Author(s):  
Niels Skov Olesen

In some areas of Denmark nutrient removal is required even for very small wastewater plants, that is down to 500 pe (pe = person equivalents). The goal for the removal is 80% removal of nitrogen and 90% removal of phosphorus, or in terms of concentrations: 8 mg nitrogen/l and 1.2 mg phosphorus/l. The inlet concentrations are typically 40 mg N/l and 10 mg P/l. The paper presents the results from two such plants with a capacity of 800 pe. Phosphorus removal is made by simultaneous precipitation with ferrous sulphate. Nitrogen removal is carried out using the recirculation method. Both plants were originally rotor aerated oxidation ditches. They have been extended with a denitrification reactor and a recirculation pumping station. At present both plants have been in activity for about 3 years and with satisfactory results. Average concentrations of nitrogen (summer) and phosphorus is 7 mg/l and 0.9 mg/l respectively. Nitrogen removal seems to be a practical solution on these small plants. It is,though, sensitive to temperature and highly oxidized rain water. Phosphorus removal seems to be an easily run and relatively non-sensitive technique at least when using simultaneous precipitation.


1997 ◽  
Vol 36 (1) ◽  
pp. 129-137 ◽  
Author(s):  
Vibeke R. Borregaard

In the upgrade of wastewater treatment plants to include biological nutrient removal the space available is often a limiting facor. It may be difficult to use conventional suspended growth processes (i.e. activated sludge) owing to the relatively large surface area required for these processes. Recent years have therefore seen a revived interest in treatment technologies using various types of attached growth processes. The “new” attached growth processes, like the Biostyr process, utilise various kinds of manufactured media, e.g. polystyrene granules, which offer a high specific surface area, and are therefore very compact. The Biostyr plants allow a combination of nitrification-denitrification and filtration in one and the same unit. The results obtained are 8 mg total N/l and an SS content normally below 10 mg/l. The plants in Denmark which have been extended with a Biostyr unit have various levels of PLC control and on-line instrumentation.


2013 ◽  
Vol 67 (7) ◽  
pp. 1481-1489 ◽  
Author(s):  
R. Barat ◽  
J. Serralta ◽  
M. V. Ruano ◽  
E. Jiménez ◽  
J. Ribes ◽  
...  

This paper presents the plant-wide model Biological Nutrient Removal Model No. 2 (BNRM2). Since nitrite was not considered in the BNRM1, and this previous model also failed to accurately simulate the anaerobic digestion because precipitation processes were not considered, an extension of BNRM1 has been developed. This extension comprises all the components and processes required to simulate nitrogen removal via nitrite and the formation of the solids most likely to precipitate in anaerobic digesters. The solids considered in BNRM2 are: struvite, amorphous calcium phosphate, hidroxyapatite, newberite, vivianite, strengite, variscite, and calcium carbonate. With regard to nitrogen removal via nitrite, apart from nitrite oxidizing bacteria two groups of ammonium oxidizing organisms (AOO) have been considered since different sets of kinetic parameters have been reported for the AOO present in activated sludge systems and SHARON (Single reactor system for High activity Ammonium Removal Over Nitrite) reactors. Due to the new processes considered, BNRM2 allows an accurate prediction of wastewater treatment plant performance in wider environmental and operating conditions.


2003 ◽  
Vol 47 (12) ◽  
pp. 125-132 ◽  
Author(s):  
O. Nowak

The energy demand of municipal wastewater treatment plants for nutrient removal equipped with primary clarifiers, activated sludge system, anaerobic sludge digestion, and CHP is evaluated theoretically, on the basis of COD balances. Operational experience from energy-efficient Austrian treatment plants confirms that the demand on external electrical energy can be kept as low as 5 to 10 kWh/(pe.a) depending on the N:COD ratio in the raw wastewater. A low N:COD ratio helps to keep not only the effluent nitrogen load low, but also the energy demand. Measures to minimise the energy demand at treatment plants and to reduce the nitrogen load are discussed.


Sign in / Sign up

Export Citation Format

Share Document