Cu(II) removal by Rhodotorula mucilaginosa RCL-11 in sequential batch cultures

2009 ◽  
Vol 60 (5) ◽  
pp. 1225-1232 ◽  
Author(s):  
Liliana B. Villegas ◽  
María J. Amoroso ◽  
Lucía I. C. de Figueroa ◽  
Faustino Siñeriz

The present study explored the ability of the yeast Rhodotorula mucilaginosa RCL-11 to adapt to increasing Cu(II) concentrations, measuring oxidative stress through superoxide dismutase and catalase activity in two parallel sequential batch assays. One assay was performed in Erlenmeyer flasks without aeration and a second in a fermentor in which the dissolved oxygen was maintained at 30% saturation. Both assays were carried out by increasing Cu(II) concentrations in five sequential steps: 0; 0.1; 0.2; 0.5 and 1 mM. Each assay was incubated at 30°C, 250 rpm and pH 5.5. While growth parameters of R. mucilaginosa RCL-11 decreased 90–95% with increasing Cu(II) concentration in the culture medium, the oxidative stress level increased from 30 to 55% in both assays. Cells grown under controlled oxygen conditions showed 30% more copper bioaccumulation and 10% glucose consumption when compared with cells grown without aeration. SOD activity was higher under controlled than whitout areation, whereas CAT activity was similar under both test conditions. Cu(II) bioaccumulation by R. mucilaginosa RCL-11 and a possible increase in this capacity by adaptation of the strain under controlled aeration represent a potential valuable tool for treatment of effluents or water bioremediation with high copper contents.

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Yi Sun ◽  
Di Cui ◽  
Zhe Zhang ◽  
Tan Zhang ◽  
Jun Shi ◽  
...  

Purpose. The purpose of the present study was to investigate the effect of acute exhaustive swimming exercise on apoptosis in the skeletal muscle of mice.Method. C57BL/6 mice were averagely divided into seven groups. One group was used as control (C), while the remaining six groups went through one-time exhaustive swimming exercise and were terminated at 0 h, 2 h, 6 h, 12 h, 24 h, and 48 h upon completion of exercise.Result. ABTS was significantly lowered at 12 h and 48 h after exercise. The MDA level was significantly decreased at any time points sampled following exercise. Total SOD activity was significantly decreased at 6 h, 12 h, 24 h, and 48 h after exercise. Neither mRNA of Bax nor Bax/Bcl-2 ratio was significantly altered by exercise. mRNA of Bcl-2 was significantly decreased since 6 h after exercise. mRNA and protein expressions of PGC-1αwere significantly increased at different time points following exercise.Conclusion. Cellular oxidative stress level was decreased following low intensity, long duration acute exhaustive swimming exercise in mice, and the enzymatic antioxidant capacity was compromised. Apoptosis of the skeletal muscle was inhibited, which could partially be explained by the enhanced level of PGC-1α.


2011 ◽  
Vol 356-360 ◽  
pp. 119-126
Author(s):  
Li Juan Huang ◽  
Xue Xiu Chang ◽  
Cheng Wu

The laboratory experiment was conducted to investigated the effect of nickel over a concentration gradient of 0.1~1.00 mg/L on biomass ( indicated by absorbance of cell culture at 663nm wavelength ), superoxide anion (O2•ˉ), malondialdehyde (MDA), and superoxide dismutase (SOD) in the cyanobacterium Microcystis aeruginosa FACHB 905 isolated from Dianchi Lake, south west of China . The results showed: (1) M. aeruginosa could live normally in Ni (II)-absence culture medium,but 0.3 mg/L Ni(II) was the fittest concentration for test M. aeruginosa, in which biomass and SOD activity were highest among all test cultures; (2) Ni(II) induced O2•ˉ and MDA in M. aeruginosa cells under the experimental condition, showing that Ni(II) could influence on M. aeruginosa by inducing oxidative stress; (3) Fe-SOD and Mn-SOD were found in M. aeruginosa and both of them were induced by lower Ni(II) but inhibited by higher concentration. The multiformity of SOD isoenzymes enhance the resistance of M. aeruginosa to oxygen stress induced by unfavorable condition, which explained that M. aeruginosa is the preponderant species in badly polluted Dianchi Lake water for long period.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Raja Lakhal ◽  
Richard Auria ◽  
Sylvain Davidson ◽  
Bernard Ollivier ◽  
Alain Dolla ◽  
...  

Batch cultures ofThermotoga maritimawere performed in a bioreactor equipped with instruments adapted for experiments performed at 80∘C to mimic the fluctuating oxidative conditions in the hot ecosystems it inhabits. When grown anaerobically on glucose,T. maritimawas shown to significantly decrease the redox potential (Eh) of the culture medium down to about −480 mV, as long as glucose was available. Addition of oxygen intoT. maritimacultures during the stationary growth phase led to a drastic reduction in glucose consumption rate. However, although oxygen was toxic, our experiment unambiguously proved thatT. maritimawas able to consume it during a 12-hour exposure period. Furthermore, a shift in glucose metabolism towards lactate production was observed under oxidative conditions.


Author(s):  
Hatice Tunca ◽  
Ali Doğru ◽  
Feray Köçkar ◽  
Burçin Önem ◽  
Tuğba Ongun Sevindik

Azadirachtin (Aza) used as insecticide due to inhibiting growth of insects and preventing them from feeding on plants. To understand the effects of contamination of this insecticide on phototrophs, and to determine the responses of these organisms against these insecticides are extremely important in understanding how the ecosystem is affected. In this study, chlorophyll-a amount, OD 560 and antioxidant parameters (total SOD, APX, GR, Proline, MDA and H2O2) were determined in order to understand the effect of Aza on Arthrospira platensis Gomont. Aza was applied between 0–20 μg mL−1 concentrations for 7 days in the study. Enzyme analysis was conducted at the end of the 7th day. There was a statistically significant decrease in the absorbance of OD560 and the chlorophyll-a content in A. platensis cultures exposed to the Aza (0–20 μg mL−1) during 7 days due to the increase in pesticide levels. SOD activity decreased at 8, 16 and 20 μg mL−1 concentrations; GR enzyme activity showed a significant decrease compared to the control at a concentration of 20 μg mL−1. APX activity did not change significantly compared to control. The MDA content increased significantly at 16 and 20 μg mL−1 concentrations. The H2O2 content significantly increased at 12, 16 and 20 μg mL−1 concentrations (p < 0.05) while the free proline content decreased at 4 μg mL−1 concentration (p < 0.05). As a result, regarding the Aza concentrations used in this study may be a step to prevent pesticide pollution in the environment.


Food Industry ◽  
2018 ◽  
Vol 3 (4) ◽  
Author(s):  
Ekaterina V. Pastushkova ◽  
Olga V. Chugunova ◽  
Leonid S. Volkanin

1990 ◽  
Vol 55 (3) ◽  
pp. 854-866 ◽  
Author(s):  
Rodríguez V. Bravo ◽  
Rubio F. Camacho ◽  
Villasclaras S. Sánchez ◽  
Vico M. Castro

The ethanolic fermentation in batch cultures of Pachysolen tannophilus was studied experimentally varying the initial concentrations of two of the components in the culture medium: glucose between 0 and 200 g l-1 and yeast extract between 0 and 8 g l-1. The yeast extract appears to be a significant component both in cell growth and for ethanol production.


Author(s):  
Elena Rodríguez-Sánchez ◽  
José Alberto Navarro-García ◽  
Jennifer Aceves-Ripoll ◽  
Laura González-Lafuente ◽  
Nerea Corbacho-Alonso ◽  
...  

Abstract Aging and chronic kidney disease (CKD) are important interrelated cardiovascular risk (CVR) factors linked to oxidative stress, but this relationship has not been well studied in older adults. We assessed the global oxidative status in an older population with normal to severely impaired renal function. We determined the oxidative status of 93 older adults (mean age 85 years) using multimarker scores. OxyScore was computed as index of systemic oxidative damage by analyzing carbonyl groups, oxidized low-density lipoprotein, 8-hydroxy-2′-deoxyguanosine, and xanthine oxidase activity. AntioxyScore was computed as index of antioxidant defense by analyzing catalase and superoxide dismutase (SOD) activity and total antioxidant capacity. OxyScore and AntioxyScore were higher in subjects with estimated glomerular filtration rate (eGFR) &lt;60 mL/min/1.73 m2 than in peers with eGFR &gt;60 mL/min/1.73 m2, with protein carbonyls, catalase, and SOD activity as major drivers. Older adults with a recent cardiovascular event had similar OxyScore and AntioxyScore as peers with eGFR &gt;60 mL/min/1.73 m2. Multivariate linear regression analysis revealed that both indices were associated with decreased eGFR independently of traditional CVR factors. Interestingly, AntioxyScore was also associated with diuretic treatment, and a more pronounced increase was seen in subjects receiving combination therapy. The associations of AntioxyScore with diuretic treatment and eGFR were mutually independent. In conclusion, eGFR is the major contributor to the imbalance in oxidative stress in this older population. Given the association between oxidative stress, CKD, and CVR, the inclusion of renal function parameters in CVR estimators for older populations, such as the SCORE-OP, might improve their modest performance.


Author(s):  
Kiptiyah Kiptiyah ◽  
Widodo Widodo ◽  
Gatot Ciptadi ◽  
Aulanni’am Aulanni’Am ◽  
Mohammad A. Widodo ◽  
...  

AbstractBackgroundWe investigated whether 10-gingerol is able to induce oxidative stress in cumulus cells.MethodsFor the in-vitro research, we used a cumulus cell culture in M199, containing 10-gingerol in various concentrations (0, 12, 16, and 20 µM), and detected oxidative stress through superoxide dismutase (SOD) activity and malondialdehyde (MDA) concentrations, with incubation periods of 24, 48, 72, and 96 h. The obtained results were confirmed by in-silico studies.ResultsThe in-vitro data revealed that SOD activity and MDA concentration increased with increasing incubation periods: SOD activity at 0 µM (1.39 ± 0.24i), 12 µM (16.42 ± 0.35ab), 16 µM (17.28 ± 0.55ab), 20 µM (17.81 ± 0.12a), with a contribution of 71.1%. MDA concentration at 0 µM (17.82 ± 1.39 l), 12 µM (72.99 ± 0.31c), 16 µM (79.77 ± 4.19b), 20 µM (85.07 ± 2.57a), with a contribution of 73.1%. Based on this, the in-silico data uncovered that 10˗gingerol induces oxidative stress in cumulus cells by inhibiting HTR1A functions and inactivating GSK3B and AKT˗1.Conclusions10-gingerol induces oxidative stress in cumulus cells through enhancing SOD activity and MDA concentration by inhibiting HTR1A functions and inactivating GSK3B and AKT˗1.


Sign in / Sign up

Export Citation Format

Share Document