A PCR-DGGE approach to evaluate the impact of wastewater source on the antibiotic resistance diversity in treated wastewater effluent

2012 ◽  
Vol 65 (7) ◽  
pp. 1323-1331 ◽  
Author(s):  
J. Sigala ◽  
A. Unc

Increased incidence of antibiotics in human-affected environments is raising concerns about increase in acquired antibiotic resistance by environmental bacteria. Wastewater collection and treatment systems are likely significant anthropogenic sinks and vectors for antibiotics and associated antibiotic resistance. Typical municipal treatment plants collect wastewaters of various sources, including well-established antibiotic resistance reservoirs such as hospitals, intensive care units and nursing homes, and integrate them with sources not commonly identified as major sources of antibiotic resistance, such as residential or industrial sources. A comprehensive PCR-DGGE diversity analysis of wastewater antibiotic-resistant bacteria was performed to evaluate the role of various wastewater sources in the discharge of antibiotic resistance by a municipal treatment plant. Wastewater sources are clearly inducing resistance in the final effluent but the role of each source type is highly variable, likely as a function of variable environmental conditions or water use patterns. Comparisons between primary treatment and secondary treatment stages indicate a strong role of the intensity of the wastewater treatment in the diversity profiles of antibiotic-resistant bacteria. While pervasiveness of antibiotic resistance in the system impedes clear discrimination between sources in the tested system, there are indications of specific source type related impacts.

2019 ◽  
Author(s):  
Cian Smyth ◽  
Aidan O’Flaherty ◽  
Fiona Walsh ◽  
Thi Thuy Do

AbstractWastewater treatment plants (WWTPs) provide optimal conditions for the maintenance and spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). In this work we describe the occurrence of antibiotic resistant faecal coliforms and their mechanisms of antibiotic resistance in the effluent of two urban WWTPs in Ireland. Effluent samples were collected from two WWTPs in Spring and Autumn of 2015 and 2016. The bacterial susceptibility patterns to 13 antibiotics were determined. The phenotypic tests were carried out to identify AmpC or extended-spectrum β-lactamase (ESBL) producers. The presence of ESBL genes were detected by PCR. Plasmids carrying ESBL genes were transformed into Escherichia coli DH5α recipient and underwent plasmid replicon typing to identify incompatibility groups. More than 90% of isolated faecal coliforms were resistant to amoxicillin and ampicillin, followed by tetracycline (up to 39.82%), ciprofloxacin (up to 31.42%) and trimethoprim (up to 37.61%). Faecal coliforms resistant to colistin and imipenem were detected in all effluent samples. Up to 53.98% of isolated faecal coliforms expressed a multi-drug resistance (MRD) phenotype. AmpC production was confirmed in 5.22% of isolates. The ESBL genes were confirmed for 11.84% of isolates (9.2% of isolates carried blaTEM, 1.4% blaSHV-12, 0.2% blaCTX-M-1 and 1% blaCTX-M-15). Plasmids extracted from 52 ESBL isolates were successfully transformed into recipient E. coli. The detected plasmid incompatibility groups included the IncF group, IncI1, IncHI1/2 and IncA/C. These results provide evidence that treated wastewater is polluted with ARB and MDR faecal coliforms and are sources of ESBL-producing, carbapenem and colistin resistant Enterobacteriaceae.ImportanceAntibiotic resistant bacteria (ARB) are an emerging environmental concern with a potential impact on human health. The results provide the evidence that treated wastewater is polluted with antibiotic resistant bacteria containing mobile resistance mechanisms of importance to clinical treatment of pathogens and multi-drug resistant (MDR) faecal coliforms. They are sources of relatively high proportions of ESBL-producing Enterobacteriaceae, and include carbapenem and colistin resistant Enterobacteriaceae. The significance of this study is the identification of the role of WWTPs as a potential control point to reduce or stop the movement of ESBL, MDR and colistin resistant bacteria into the environment from further upstream sources, such as human or animal waste.


2021 ◽  
Vol 20 (4A) ◽  
pp. 199-209
Author(s):  
Nguyen Kim Hanh ◽  
Nguyen Trinh Duc Hieu ◽  
Nguyen Minh Hieu ◽  
Vo Hai Thi ◽  
Pham Thi Mien ◽  
...  

To assess the impact of antibiotic use in aquaculture in Nha Trang bay, we conducted this study with the aim of assessing antibiotic resistance of opportunistic pathogenic bacteria isolated from water and sediment around shrimp/fish cages in the Nha Trang bay. 109 strains of Vibrio, Salmonella-Shigella and Aeromonas groups were isolated in the surrounding environment of farming areas in Dam Bay and Hon Mieu. Antimicrobial resistance test of these 109 strains showed that in the water environment in Dam Bay, TET (96.6%) and NIT (92.5%) were the two antibiotics with the highest rates of resistant bacteria while no bacteria were resistant to RIF. All 5 types of antibiotics had a statistically insignificant percentage of antibiotic-resistant bacteria in water samples at Hon Mieu, ranging from 33.3% to 68.9%. Also in the water environment, the rate of antibiotic-resistant bacteria in Dam Bay was not influenced by the distance to the cages (42.5–66.6%). Meanwhile, in Hon Mieu, the highest rate of resistant bacteria was observed at the distance of 200 m (100%) away from cages and the lowest rate at the distance of 100 m (20%). In the sediment environment around the cages, both the Dam Bay and Hon Mieu farming areas showed the highest rates of antibiotic-resistant bacteria against TET, NIF and RIF had the lowest rate of resistant bacteria. Among the total of 109 strains tested for antibiotic resistance, 2 strains labeled TCBS_HM200 m and SS_HM200 m were found to be resistant to all 5 tested antibiotics. These two strains were respectively identified as Vibrio harveyi and Oceanimonas sp.


2019 ◽  
Author(s):  
Cian Smyth ◽  
Aidan O’Flaherty ◽  
Fiona Walsh ◽  
Thi Thuy Do

AbstractWastewater treatment plants (WWTPs) provide optimal conditions for the maintenance and spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). In this work we describe the occurrence of antibiotic resistant faecal coliforms and their mechanisms of antibiotic resistance in the effluent of two urban WWTPs in Ireland. Effluent samples were collected from two WWTPs in Spring and Autumn of 2015 and 2016. The bacterial susceptibility patterns to 13 antibiotics were determined. The phenotypic tests were carried out to identify AmpC or extended-spectrum β-lactamase (ESBL) producers. The presence of ESBL genes were detected by PCR. Plasmids carrying ESBL genes were transformed into Escherichia coli DH5α recipient and underwent plasmid replicon typing to identify incompatibility groups. More than 90% of isolated faecal coliforms were resistant to amoxicillin and ampicillin, followed by tetracycline (up to 39.82%), ciprofloxacin (up to 31.42%) and trimethoprim (up to 37.61%). Faecal coliforms resistant to colistin and imipenem were detected in all effluent samples. Up to 53.98% of isolated faecal coliforms expressed a multi-drug resistance (MRD) phenotype. AmpC production was confirmed in 5.22% of isolates. The ESBL genes were confirmed for 11.84% of isolates (9.2% of isolates carried blaTEM, 1.4% blaSHV-12, 0.2% blaCTX-M-1 and 1% blaCTX-M-15). Plasmids extracted from 52 ESBL isolates were successfully transformed into recipient E. coli. The detected plasmid incompatibility groups included the IncF group, IncI1, IncHI1/2 and IncA/C. These results provide evidence that treated wastewater is polluted with ARB and MDR faecal coliforms and are sources of ESBL-producing, carbapenem and colistin resistant Enterobacteriaceae.ImportanceAntibiotic resistant bacteria (ARB) are an emerging environmental concern with a potential impact on human health. The results provide the evidence that treated wastewater is polluted with antibiotic resistant bacteria containing mobile resistance mechanisms of importance to clinical treatment of pathogens and multi-drug resistant (MDR) faecal coliforms. They are sources of relatively high proportions of ESBL-producing Enterobacteriaceae, and include carbapenem and colistin resistant Enterobacteriaceae. The significance of this study is the identification of the role of WWTPs as a potential control point to reduce or stop the movement of ESBL, MDR and colistin resistant bacteria into the environment from further upstream sources, such as human or animal waste.


Water ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 244 ◽  
Author(s):  
Pei-Ying Hong ◽  
Timothy Julian ◽  
Marie-Laure Pype ◽  
Sunny Jiang ◽  
Kara Nelson ◽  
...  

2010 ◽  
Vol 56 (7) ◽  
pp. 558-568
Author(s):  
George J. Sorger ◽  
James S. Quinn

Sewage, a major source of bacterial contamination of the environment, can be an important health hazard. The presence of antibiotic-resistant bacteria in sewage can exacerbate this problem. The sources of antibiotic-resistant bacteria in sewage are, for this reason, worth identifying and addressing. The bacterial flora in the effluent of the Woodward Avenue Wastewater Treatment Plant (WAWTP) in Hamilton, Ontario, Canada, contains many antibiotic-resistant coliforms. Here we ask, are the antibiotic resistance genes in the coliforms in the effluent of WAWTP descended from a recent common ancestor strain? If so, the source could be identified and eliminated. If, on the other hand, the antibiotic resistance genes in the bacterial flora of the WAWTP have more than one origin, identification and elimination of the source(s) could be difficult. There was considerable diversity of antibiotic resistance patterns and antibiotic resistance genes among the effluent and influent coliform isolates of the WAWTP, suggesting multiple genetic ancestry. The patterns of horizontal transmissibility and sequence differences in the genes tetA and tetE among these coliform isolates also suggest that they have no one predominant ancestral strain. Using the same logic, the evidence presented here is not compatible with a single ancestral origin of the antibiotic resistance genes in the isolates described herein.


2019 ◽  
Vol 20 (1) ◽  
pp. 63-75 ◽  
Author(s):  
Damiana Ravasi ◽  
Roger König ◽  
Pamela Principi ◽  
Giuseppe Perale ◽  
Antonella Demarta

Background: Conventional wastewater treatment plants discharge significant amounts of antibiotic resistant bacteria and antibiotic resistance genes into natural water bodies contributing to the spread of antibiotic resistance. Some advanced wastewater treatment technologies have been shown to effectively decrease the number of bacteria. Nevertheless, there is still a lack of knowledge about the effectiveness of these treatments on antibiotic resistant bacteria and antibiotic resistant genes. To the best of our knowledge, no specific studies have considered how powdered activated carbon (PAC) treatments can act on antibiotic resistant bacteria, although it is essential to assess the impact of this wastewater treatment on the spread of antibiotic resistant bacteria. </P><P> Methods: To address this gap, we evaluated the fate and the distribution of fluorescent-tagged antibiotic/ antimycotic resistant microorganisms in a laboratory-scale model simulating a process configuration involving powdered activated carbon as advanced wastewater treatment. Furthermore, we studied the possible increase of naturally existing antibiotic resistant bacteria during the treatment implementing PAC recycling. Results: The analysis of fluorescent-tagged microorganisms demonstrated the efficacy of the PAC adsorption treatment in reducing the load of both susceptible and resistant fluorescent microorganisms in the treated water, reaching a removal efficiency of 99.70%. Moreover, PAC recycling did not increase the resistance characteristics of cultivable bacteria neither in the sludge nor in the treated effluent. Conclusion: Results suggest that wastewater PAC treatment is a promising technology not only for the removal of micropollutants but also for its effect in decreasing antibiotic resistant bacteria release.


Fine Focus ◽  
2017 ◽  
Vol 3 (2) ◽  
pp. 113-126
Author(s):  
Annie Kwok ◽  
Michael C. Davis ◽  
Sanghoon Kang

Antibiotic resistance is a growing concern for the human population and is becoming prevalent in many environments. For example, increasing occurrences of antibiotic resistance genes (ARGs) in aquatic ecosystems elevates the risk of pathogenic microbes acquiring those resistance genes. There is an urgent need to more closely examine the relationship between antibiotic resistant bacteria (ARB) and antibiotic residues in urban freshwater environments. Thus, our main objective was to investigate the presence of antibiotic resistance in wastewater treatment plant (WWTP) influent and effluent leading into the Brazos River using several commonly used antibiotics: penicillin, ciprofloxacin, erythromycin, trimethoprim, tetracycline, sulfamethoxazole, and gentamicin. An additional aim was to explore possible mechanisms of resistance emergence to these antibiotics using techniques such as replica plating, the Luria-Delbrück Fluctuation Test, the Newcombe Test, and 16S rRNA sequencing. Four samples of influent and treated effluent wastewater were collected from the WWTP to enumerate resistant bacteria in the community and to investigate whether mutations causing resistance in ARB might be induced or spontaneous. We found that penicillin had the highest rate of resistance in all samples and that a similar trend of resistance appeared across all four samples. According to the Luria–Delbrück Fluctuation Test and the Newcombe Test, different antibiotics appear to be associated with different tendencies of resistance emergence, with certain groups of antibiotics producing different results, which raises evolutionary questions about the roles of random mutation and induction. Most ARB detected from the Luria–Delbrück Fluctuation Test belong to the Klebsiella, Enterobacter, and Aeromonas genera. This study provides a baseline understanding of the urban freshwater ecosystem status in central Texas and quantitatively examines the degree of resistance emergence.


Sign in / Sign up

Export Citation Format

Share Document