scholarly journals Antibiotics resistance in pathogenic bacteria isolated from water and sediment around the floating fish farms in the Nha Trang bay

2021 ◽  
Vol 20 (4A) ◽  
pp. 199-209
Author(s):  
Nguyen Kim Hanh ◽  
Nguyen Trinh Duc Hieu ◽  
Nguyen Minh Hieu ◽  
Vo Hai Thi ◽  
Pham Thi Mien ◽  
...  

To assess the impact of antibiotic use in aquaculture in Nha Trang bay, we conducted this study with the aim of assessing antibiotic resistance of opportunistic pathogenic bacteria isolated from water and sediment around shrimp/fish cages in the Nha Trang bay. 109 strains of Vibrio, Salmonella-Shigella and Aeromonas groups were isolated in the surrounding environment of farming areas in Dam Bay and Hon Mieu. Antimicrobial resistance test of these 109 strains showed that in the water environment in Dam Bay, TET (96.6%) and NIT (92.5%) were the two antibiotics with the highest rates of resistant bacteria while no bacteria were resistant to RIF. All 5 types of antibiotics had a statistically insignificant percentage of antibiotic-resistant bacteria in water samples at Hon Mieu, ranging from 33.3% to 68.9%. Also in the water environment, the rate of antibiotic-resistant bacteria in Dam Bay was not influenced by the distance to the cages (42.5–66.6%). Meanwhile, in Hon Mieu, the highest rate of resistant bacteria was observed at the distance of 200 m (100%) away from cages and the lowest rate at the distance of 100 m (20%). In the sediment environment around the cages, both the Dam Bay and Hon Mieu farming areas showed the highest rates of antibiotic-resistant bacteria against TET, NIF and RIF had the lowest rate of resistant bacteria. Among the total of 109 strains tested for antibiotic resistance, 2 strains labeled TCBS_HM200 m and SS_HM200 m were found to be resistant to all 5 tested antibiotics. These two strains were respectively identified as Vibrio harveyi and Oceanimonas sp.

2020 ◽  
Vol 11 ◽  
Author(s):  
Ting Su ◽  
Ye Qiu ◽  
Xuesi Hua ◽  
Bi Ye ◽  
Haoming Luo ◽  
...  

Antibiotic resistance is becoming significantly prominent and urgent in clinical practice with the increasing and wide application of antibacterial drugs. However, developing and synthesizing new antimicrobial drugs is costly and time-consuming. Recently, researchers shifted their sights to traditional Chinese medicine (TCM). Here, we summarized the inhibitory mechanism of TCM herbs and their active ingredients on bacteria, discussed the regulatory mechanism of TCM on antibiotic-resistant bacteria, and revealed preclinical results of TCM herbs and their active components against antibiotic-resistant bacteria in mouse models. Those data suggest that TCM herbs and their effective constituents exhibit potential blockage ability on antibiotic-resistant bacteria, providing novel therapeutic ideas for reversing antibiotic resistance.


2012 ◽  
Vol 65 (7) ◽  
pp. 1323-1331 ◽  
Author(s):  
J. Sigala ◽  
A. Unc

Increased incidence of antibiotics in human-affected environments is raising concerns about increase in acquired antibiotic resistance by environmental bacteria. Wastewater collection and treatment systems are likely significant anthropogenic sinks and vectors for antibiotics and associated antibiotic resistance. Typical municipal treatment plants collect wastewaters of various sources, including well-established antibiotic resistance reservoirs such as hospitals, intensive care units and nursing homes, and integrate them with sources not commonly identified as major sources of antibiotic resistance, such as residential or industrial sources. A comprehensive PCR-DGGE diversity analysis of wastewater antibiotic-resistant bacteria was performed to evaluate the role of various wastewater sources in the discharge of antibiotic resistance by a municipal treatment plant. Wastewater sources are clearly inducing resistance in the final effluent but the role of each source type is highly variable, likely as a function of variable environmental conditions or water use patterns. Comparisons between primary treatment and secondary treatment stages indicate a strong role of the intensity of the wastewater treatment in the diversity profiles of antibiotic-resistant bacteria. While pervasiveness of antibiotic resistance in the system impedes clear discrimination between sources in the tested system, there are indications of specific source type related impacts.


2021 ◽  
Author(s):  
Matilde Costa Fernandes ◽  
Miguel L. Grilo ◽  
Eva Cunha ◽  
Carla Carneiro ◽  
Luís Tavares ◽  
...  

Abstract Background: Several studies detected high levels of antibiotic-resistance in loggerhead sea turtles (Caretta caretta) and pointed this species as prime reservoirs of antibiotic-resistant bacteria and carriers of potentially pathogenic bacteria. This study aimed to characterize, for the first time, the Gram-negative aerobic microbiota of the Cape Verdean loggerhead subpopulation. Cloacal, oral and egg content swab samples from 33 nesting loggerheads (n = 99) of the Island of Maio were analysed regarding the presence of Gram-negative bacteria and their antibiotic resistance and virulence profiles. Results: Shewanella putrefaciens (27.78%), Morganella morganii (22.22%) and Vibrio alginolyticus (22.22%) were the most prevalent species isolated from the animals under study. A low incidence of antibiotic-resistant bacteria (26%) was detected, and no multidrug-resistant isolates were identified. Non-Enterobacteriaceae isolates presented the most complex virulence profiles, revealing the ability to produce hemolysins (100%), DNases (89%), lipases (79%), proteases (53%), lecithinases (21%), gelatinases (16%), and also biofilms (74%). Moreover, higher virulence indices were obtained for turtles with high parasite intensities compared with apparently healthy animals, and a positive correlation between antibiotic resistance and virulence was observed. Conclusions: Results suggest that this loggerhead population may be less exposed to antimicrobial compounds, probably due to the low anthropogenic impact observed in both their nesting (the Island of Maio) and foraging sites. Nevertheless, the presence of potentially pathogenic bacteria expressing virulence factors may threat both sea turtles’ and humans’ health.


2021 ◽  
Vol 80 (3) ◽  
Author(s):  
Maria Belen Sathicq ◽  
Tomasa Sbaffi ◽  
Giulia Borgomaneiro ◽  
Andrea Di Cesare ◽  
Raffaella Sabatino

The World Health Organization considers antibiotic resistance as one of the main threats to human and other animals' health. Despite the measures used to limit the spread of antibiotic resistance, the efforts made are not enough to tackle this problem. Thus, it has become important to understand how bacteria acquire and transmit antibiotic resistant genes (ARGs), in particular in the environment, given the close connection between the latter and human and animal health, as defined by the One-Health concept. Aquatic ecosystems are often strongly impacted by anthropogenic activities, making them a source for ARGs and antibiotic resistant bacteria (ARB). Although freshwater meiofauna have been the object of active research, few studies have focused on the relationship between the spread of antibiotic resistance and these organisms. In this review, we investigated freshwater meiofauna as carriers of resistances since they play a central role in the aquatic environments and can harbor human and animal potential pathogens. We assessed if these animals could contribute to the spread of ARGs and of potentially pathogenic bacteria. Only four taxa (Rotifera, Chironomidae, Cladocera, Copepoda) were found to be the subject of studies focused on antibiotic resistance. The studies we analyzed, although with some limitations, demonstrated that ARGs and ARB can be found in these animals, and several of them showed the presence of potentially pathogenic bacteria for humans and animals within their microbiome. Thus, meiofauna can be considered a source and a reservoir, even if neglected, of ARGs and ARB for the freshwater environments. However, further studies are needed to evaluate the impact of the meiofauna on the spread and persistence of antibiotic resistance in these ecosystems.


2019 ◽  
Vol 20 (1) ◽  
pp. 63-75 ◽  
Author(s):  
Damiana Ravasi ◽  
Roger König ◽  
Pamela Principi ◽  
Giuseppe Perale ◽  
Antonella Demarta

Background: Conventional wastewater treatment plants discharge significant amounts of antibiotic resistant bacteria and antibiotic resistance genes into natural water bodies contributing to the spread of antibiotic resistance. Some advanced wastewater treatment technologies have been shown to effectively decrease the number of bacteria. Nevertheless, there is still a lack of knowledge about the effectiveness of these treatments on antibiotic resistant bacteria and antibiotic resistant genes. To the best of our knowledge, no specific studies have considered how powdered activated carbon (PAC) treatments can act on antibiotic resistant bacteria, although it is essential to assess the impact of this wastewater treatment on the spread of antibiotic resistant bacteria. </P><P> Methods: To address this gap, we evaluated the fate and the distribution of fluorescent-tagged antibiotic/ antimycotic resistant microorganisms in a laboratory-scale model simulating a process configuration involving powdered activated carbon as advanced wastewater treatment. Furthermore, we studied the possible increase of naturally existing antibiotic resistant bacteria during the treatment implementing PAC recycling. Results: The analysis of fluorescent-tagged microorganisms demonstrated the efficacy of the PAC adsorption treatment in reducing the load of both susceptible and resistant fluorescent microorganisms in the treated water, reaching a removal efficiency of 99.70%. Moreover, PAC recycling did not increase the resistance characteristics of cultivable bacteria neither in the sludge nor in the treated effluent. Conclusion: Results suggest that wastewater PAC treatment is a promising technology not only for the removal of micropollutants but also for its effect in decreasing antibiotic resistant bacteria release.


Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 575
Author(s):  
Emi Nishimura ◽  
Masateru Nishiyama ◽  
Kei Nukazawa ◽  
Yoshihiro Suzuki

Information on the actual existence of antibiotic-resistant bacteria in rivers where sewage, urban wastewater, and livestock wastewater do not load is essential to prevent the spread of antibiotic-resistant bacteria in water environments. This study compared the antibiotic resistance profile of Escherichia coli upstream and downstream of human habitation. The survey was conducted in the summer, winter, and spring seasons. Resistance to one or more antibiotics at upstream and downstream sites was on average 18% and 20%, respectively, and no significant difference was observed between the survey sites. The resistance rates at the upstream site (total of 98 isolated strains) to each antibiotic were cefazolin 17%, tetracycline 12%, and ampicillin 8%, in descending order. Conversely, for the downstream site (total of 89 isolated strains), the rates were ampicillin 16%, cefazolin 16%, and tetracycline 1% in descending order. The resistance rate of tetracycline in the downstream site was significantly lower than that of the upstream site. Furthermore, phylogenetic analysis revealed that many strains showed different resistance profiles even in the same cluster of the Pulsed-Field Gel Electrophoresis (PFGE) pattern. Moreover, the resistance profiles differed in the same cluster of the upstream and the downstream sites. In flowing from the upstream to the downstream site, it is plausible that E. coli transmitted or lacked the antibiotic resistance gene.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1841
Author(s):  
Thanaporn Chuen-Im ◽  
Korapan Sawetsuwannakun ◽  
Pimmnapar Neesanant ◽  
Nakarin Kitkumthorn

Antibiotic resistance of microorganisms is a serious health problem for both humans and animals. Infection of these bacteria may result in therapy failure, leading to high mortality rates. During an early intervention program process, the Sea Turtle Conservation Center of Thailand (STCCT) has faced high mortality rates due to bacterial infection. Previously, investigation of juvenile turtle carcasses found etiological agents in tissue lesions. Further determination of sea water in the turtle holding tanks revealed a prevalence of these causative agents in water samples, implying association of bacterial isolates in rearing water and infection in captive turtles. In this study, we examined the antibiotic resistance of bacteria in seawater from the turtle holding tank for a management plan of juvenile turtles with bacterial infection. The examination was carried out in three periods: 2015 to 2016, 2018, and 2019. The highest isolate numbers were resistant to beta-lactam, whilst low aminoglycoside resistance rates were observed. No gentamicin-resistant isolate was detected. Seventy-nine isolates (71.17%) were resistant to at least one antibiotic. Consideration of resistant bacterial and antibiotic numbers over three sampling periods indicated increased risk of antibiotic-resistant bacteria to sea turtle health. Essentially, this study emphasizes the importance of antibiotic-resistant bacterial assessment in rearing seawater for sea turtle husbandry.


Sign in / Sign up

Export Citation Format

Share Document