Catalytic oxidation with Al–Ce–Fe–PILC as a post-treatment system for coffee wet processing wastewater

2012 ◽  
Vol 66 (8) ◽  
pp. 1663-1668 ◽  
Author(s):  
Nancy R. Sanabria ◽  
Yury M. Peralta ◽  
Mardelly K. Montañez ◽  
Nelson Rodríguez-Valencia ◽  
Rafael Molina ◽  
...  

The effluent from the anaerobic biological treatment of coffee wet processing wastewater (CWPW) contains a non-biodegradable compound that must be treated before it is discharged into a water source. In this paper, the wet hydrogen peroxide catalytic oxidation (WHPCO) process using Al–Ce–Fe–PILC catalysts was researched as a post-treatment system for CWPW and tested in a semi-batch reactor at atmospheric pressure and 25 °C. The Al–Ce–Fe–PILC achieved a high conversion rate of total phenolic compounds (70%) and mineralization to CO2 (50%) after 5 h reaction time. The chemical oxygen demand (COD) of coffee processing wastewater after wet hydrogen peroxide catalytic oxidation was reduced in 66%. The combination of the two treatment methods, biological (developed by Cenicafé) and catalytic oxidation with Al-Ce–Fe–PILC, achieved a 97% reduction of COD in CWPW. Therefore, the WHPCO using Al–Ce–Fe–PILC catalysts is a viable alternative for the post-treatment of coffee processing wastewater.

2013 ◽  
Vol 67 (8) ◽  
pp. 1816-1821 ◽  
Author(s):  
E. Hosseini Koupaie ◽  
M. R. Alavi Moghaddam ◽  
S. H. Hashemi

The application of a granular activated carbon-sequencing batch biofilm reactor (GAC-SBBR) for treatment of wastewater containing 1,000 mg/L Acid Red 18 (AR18) was investigated in this research. The treatment system consisted of a sequencing batch reactor equipped with moving GAC as biofilm support. Each treatment cycle consisted of two successive anaerobic (14 h) and aerobic (8 h) reaction phases. Removal of more than 91% chemical oxygen demand (COD) and 97% AR18 was achieved in this study. Investigation of dye decolorization kinetics showed that the dye removal was stimulated by the adsorption capacity of the GAC at the beginning of the anaerobic phase and then progressed following a first-order reaction. Based on COD analysis results, at least 77.8% of the dye total metabolites were mineralized during the applied treatment system. High-performance liquid chromatography analysis revealed that more than 97% of 1-naphthyalamine-4-sulfonate as one of the main sulfonated aromatic constituents of AR18 was removed during the aerobic reaction phase. According to the scanning electron microscopic analysis, the microbial biofilms grew in most cavities and pores of the GAC, but not on the external surfaces of the GAC.


2021 ◽  
Vol 233 ◽  
pp. 01106
Author(s):  
Song Du ◽  
Wenbiao Jin

Caprolactam wastewater produced by the production process of caprolactam is characterized by a very high toxicity and chemical oxygen demand (COD) values, having potential harm to the environment if treated improperly. However, these characteristics make caprolactam wastewaters difficult to treat using traditional methods. So the aim of this work was to develop a cost-effective caprolactam wastewater treatment process. Fenton oxidation, sequencing batch reactor activated sludge process (SBR) and electro-catalytic oxidation were proposed to treat caprolactam wastewater in the laboratory scale, and the treatment effects were investigated. Compared with Fenton oxidation, SBR and electro-catalytic oxidation can treat caprolactam wastewater at a lower cost and more efficiently. The pilot test results indicate that the COD can be decreased to less than 1000 mg/L by the combination process, and when the COD removal rates maintain 90%, the cost of caprolactam wastewater treatment is below 6 yuan/m3. The combination process showed better economic benefit.


2014 ◽  
Vol 70 (5) ◽  
pp. 795-802 ◽  
Author(s):  
Xiaochen Chen ◽  
Kensuke Fukushi

With the objective of developing a post-treatment process for anaerobically digested livestock wastewater, an innovative natural treatment system composed of two units is proposed. The first trickling filter unit further reduced biochemical oxygen demand and achieved a certain degree of nitrification. The second soil-plant unit was targeted at the removal and recovery of nutrients N, P and K. For the feasibility study, a bench-scale soil column test was carried out, in which red ball earth and alfalfa were utilized for treating synthetic nutrient-enriched wastewater. Through long-term operation, the nitrification function was well established in the top layers, especially the top 20 cm, although a supplementary denitrification process was still required before discharge. P and K were retained by the soil through different mechanisms, and their plant-available forms that remained in the soil were considered suitable for indirect nutrient reuse. As for alfalfa, with wastewater application it fixed more N from the atmosphere, and directly recovered 6% of P and 4% of K input from wastewater. More importantly, alfalfa was verified to have an indispensable role in stimulating the soil nitrifying microorganisms by sustaining their abundance during substrate (NH3) and oxygen scarcity, and enhancing cell-specific nitrification potential during substrate (NH3) and oxygen sufficiency. The proposed system is expected to be further improved, and adopted as a sound countermeasure for livestock wastewater pollution.


2016 ◽  
Vol 74 (11) ◽  
pp. 2675-2682 ◽  
Author(s):  
Chia Ken Lin ◽  
Mohammed J. K. Bashir ◽  
Salem S. Abu Amr ◽  
Lan Ching Sim

The aim of the current study is to evaluate the effectiveness of combined persulphate with hydrogen peroxide (S2O82−/H2O2) oxidation as a post-treatment of biologically treated palm oil mill effluent (POME) for the first time in the literature. The removal efficiencies of chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N), and suspended solids (SS) were 36.8%, 47.6%, and 90.6%, respectively, by S2O82− oxidation alone under certain operation conditions (i.e., S2O82− = 0.82 g, pH 11, and contact time 20 min). Nevertheless, the combined process (S2O82−/H2O2) achieved 75.8% and 87.1% removals of NH3-N and SS, respectively, under 2.45/1.63 g/g H2O2/S2O82−, pH 11, and 20 min oxidation. Moreover, 56.9% of COD was removed at pH 8.4.


2010 ◽  
Vol 61 (6) ◽  
pp. 1489-1498 ◽  
Author(s):  
Rey-May Liou ◽  
Shih-Hsiung Chen ◽  
Cheng-Hsien Huang ◽  
Mu-Ya Hung ◽  
Jing-Song Chang ◽  
...  

This investigation aims at exploring the catalytic oxidation activity of iron-embedded activated carbon (FeAC) and the application for the degradation of phenol in the wet hydrogen peroxide catalytic oxidation (WHPCO). FeAC catalysts were prepared by pre-impregnating iron in coconut shell with various iron loadings in the range of 27.5 to 46.5% before they were activated. The FeAC catalysts were characterised by measuring their surface area, pore distribution, functional groups on the surface, and X-ray diffraction patterns. The effects of iron loading strongly inhibited the pore development of the catalyst but benefited the oxidation activity in WHPCO. It was found that the complete conversion of phenol was observed with all FeAC catalysts in oxidation. High level of chemical oxygen demand (COD) abatement can be achieved within the first 30 minutes of oxidation. The iron embedded in the activated carbon showed good performance in the degradation and mineralisation of phenol during the oxidation due to the active sites as iron oxides formed on the surface of the activated carbon. It was found that the embedding irons were presented in γ-Fe2O3, α-Fe2O3, and α-FeCOOH forms on the activated carbon. The aging tests on FeAC catalysts showed less activity loss, and less iron leaching was found after four oxidation runs.


2011 ◽  
Vol 63 (11) ◽  
pp. 2713-2718 ◽  
Author(s):  
Xiaoming Gao ◽  
Wenhong Li ◽  
Feng Fu ◽  
Dong Li ◽  
Zhenheng Cao ◽  
...  

A distillation-assisted catalytic oxidation (DACO) process under low temperature (100 °C) and atmospheric pressure was investigated to treat heavily contaminated wastewater from oil refining industry. The DACO experiments were carried out in a distillation batch reactor, using CuO/γ-A12O3 as catalyst. The experimental temperature was kept at 100 °C and H2O2 oxidant was supplied into the reactive system with 200 mL/L. The results demonstrated that more than 92.2% of chemical oxygen demand removal was obtained and the absorbance of the refinery wastewater after treatment was zero, indicating significant decolorization efficiency for the solution. The research of life and stability showed that the catalyst had a good stability. The present study indicates that this DACO approach may have a significant application potential for industrial wastewater treatment.


2015 ◽  
Vol 802 ◽  
pp. 437-442 ◽  
Author(s):  
Hossein Farraji ◽  
Nastaein Q. Zaman ◽  
Hamidi Abdul Aziz ◽  
Muhammad Aqeel Ashraf ◽  
Amin Mojiri ◽  
...  

Palm oil mill effluent (POME) contains high biological oxygen demand (BOD) and chemical oxygen demand (COD) Agra base wastewater is the concern of biodegradable treatment methods. Consequently, the BOD / COD ratio has a significant effect on the biodegradability of wastewaters. This study investigates effects of aerated sequencing batch reactor (SBR) system augmented by zeolite used for treatment of POME. Not only, the BOD / COD ratio increased from 0.11 in raw POME to mean 68.15% increase after aeration in the SBR system, but also, the most obvious finding to emerge from this study is that, aerated SBR could be considered as an effective method for enhancing BOD/COD ratio for qualifying post treatment by biotreatment methods.


2020 ◽  
Vol 10 (1) ◽  
pp. 86-95
Author(s):  
Shubhrasekhar Chakraborty ◽  
Pratap Kumar Mohanty ◽  
Jawed Iqbal ◽  
R. Naresh Kumar

Abstract A combined process of sequencing batch reactor (SBR) and electrocoagulation for co-treatment of landfill leachate and municipal wastewater was assessed. SBR was used in the first instance for co-treatment of 20% (v/v) landfill leachate and municipal wastewater mixture. Effluent from SBR was subjected to electrocoagulation for post-treatment, with aluminum as sacrificial anode and stainless steel as cathode. Direct current at a density of 257 A/m2 was applied during the electrocoagulation process. In electrocoagulation, spacing between the two electrodes was varied at 5 and 7 cm to assess its influence on treatment efficiency. SBR was effective to remove 65% chemical oxygen demand (COD), 77% total suspended solids (TSS), 89% ammonia, 80% nitrate, 64% phosphate and post-treatment by electrocoagulation resulted in an overall 98% COD, 98% TSS and 99% ammonia, nitrate and phosphate reduction efficiency with 5 cm of electrode spacing. Respectively, final COD, ammonia and TSS was 37, 1 and 98 mg/L after 150 min of electrocoagulation which met the Indian standards for the discharge of treated wastewater. The results highlight that SBR followed by electrocoagulation as post-treatment can be an effective option for the treatment of landfill leachate and municipal wastewater mixture.


2019 ◽  
Vol 1 (2) ◽  
pp. 1
Author(s):  
Lindawati Lindawati

Sebuah Sequencing Batch Reactor (SBR) digunakan untuk mengevaluasi peranan Biochemical Oxygen Demand (BOD) biosensor dalam proses optimasi proses pengolahan nutrien karbon, nitrogen dan fosfat. Hasil penelitian menunjukkan bahwa BOD biosensor dapat dipergunakan untuk penentuan karbon organik, sehingga reduksi siklus SBR dapat dilakukan dan efisiensi proses meningkat. Pola konsumsi karbon organik ditemukan dengan adanya ‘tanda diam’ pada fase anoksik/ anaerobik, di mana dari tanda ini, fase aerobik dapat segera dimulai. Reduksi durasi siklus SBR dari 8 jam menjadi 4 jam meningkatkan efiesiensi pengolahan C, N dan P yang meningkat pula (hampir dua kali lebih tinggi).


2013 ◽  
Vol 726-731 ◽  
pp. 2521-2525
Author(s):  
Zhi Yong Zhang ◽  
De Li Wu

Coking wastewater is a kind of recalcitrant wastewater including complicate compositions. Advanced treatment of coking wastewater by Fenton-Like reaction using pyrite as catalyst was investigated in this paper. The results show that the chemical oxygen demand (COD) of coking wastewater decreased significantly by method of coagulation combined with two-stage oxidation reaction. COD of wastewater can decrease from 250mg/l to 45mg/l after treatment, when 2g/L pyrite was used in each stage oxidation and the dosage of hydrogen peroxide (H2O2) is 0.2ml/l for first stage treatment, 0.1ml/l for second stage treatment respectively. The pyrite is effective to promote Fenton-Like reaction with low cost due to high utilization efficiency of H2O2, moreover, catalyst could be easily recovered and reused. The Fenton-Like reaction might be used as a potential alternative to advanced treatment of recalcitrant wastewater.


Sign in / Sign up

Export Citation Format

Share Document