Treatment of methyl orange dye wastewater by cooperative electrochemical oxidation in anodic–cathodic compartment

2013 ◽  
Vol 67 (3) ◽  
pp. 521-526 ◽  
Author(s):  
L. Pang ◽  
H. Wang ◽  
Z. Y. Bian

Electrochemical oxidation of methyl orange wastewater was studied using Ti/IrO2/RuO2 anode and a self-made Pd/C O2-fed cathode in the divided cell with a terylene diaphragm. The result indicated that the appropriate rate of feeding air improved the methyl orange removal efficiency. The discoloration efficiency of methyl orange in the divided cell increased with increasing current density. The initial pH value had some effect on the discoloration of methyl orange, which became not obvious when the pH ranged from 2 to 10. However, the average removal efficiency of methyl orange wastewater in terms of total organic carbon (TOC) can reach 89.3%. The methyl orange structure had changed in the electrolytic process, and the characteristic absorption peak of methyl orange was about 470 nm. With the extension of electrolysis time, the concentration of methyl orange gradually reduced; wastewater discoloration rate increased gradually. The degradation of methyl orange was assumed to be cooperative oxidation by direct or indirect electrochemical oxidation at the anode and H2O2, ·OH, O2−· produced by oxygen reduction at the cathode in the divided cell. Therefore, the cooperative electrochemical oxidation of methyl orange wastewater in the anodic–cathodic compartment had better degradation effects.

2019 ◽  
Vol 79 (12) ◽  
pp. 2279-2288 ◽  
Author(s):  
Zhen-Zhu Sun ◽  
Zhong-Hai Liu ◽  
Le Han ◽  
Dong-Ling Qin ◽  
Gang Yang ◽  
...  

Abstract A new type of iron-copper-carbon (Fe-Cu-C) ternary micro-electrolysis filler was prepared with a certain proportion of iron powder, activated carbon, bentonite, copper powder, etc. The effect of the new type of micro-electrolysis filler on the simulated methyl orange dye wastewater was studied. The effects of various operational parameters, such as reaction time, initial pH value, aeration rate, filler dose and reaction temperature, on the degradation rate of methyl orange were studied to determine the optimum treatment conditions, and the micro-electrolysis filler was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The experimental results show that the degradation rate of 220 mL of simulated dye wastewater with a concentration of 100 mg/L reached 93.41% ± 2.94% after 60 mL/min of aeration, with an initial pH = 2, a dose of 45 g and 125 minutes of reaction at room temperature. The new micro-electrolysis filler has a high degradation rate for methyl orange solution, which is attributed to the iron and activated carbon particles sintered into an integrated structure, which makes the iron and carbon difficult to separate and affects the galvanic cell reaction. The addition of copper also greatly increases the transmission efficiency of electrons, which promotes the reaction. In addition, the surface iron is consumed, the adjacent carbon is stripped layer by layer, and the new micro-electrolytic filler does not easily passivate and agglomerate during its use.


Author(s):  
Baowei Wang ◽  
Meng Xu ◽  
Chunmei Chi ◽  
Chao Wang ◽  
Dajun Meng

AbstractThe dielectric barrier discharge (DBD) technique based cylindrical water falling film reactor was used for degrading an azo dye methyl orange (MO). The primary conditions affecting the degradation of methyl orange were systematically investigated. After 30 min plasma treatment, the degradation rate of MO was as high as 93.7% with gas velocity of 300 mL/min and the input energy of 72.5W. The influences of initial pH and conductivity of MO solution were also explored. The results indicated that the optimum pH value was 3.02 and 99.1% removal of MO was achieved within 30 min. Three catalytic systems DBD/Fe


2019 ◽  
Vol 84 (7) ◽  
pp. 713-727 ◽  
Author(s):  
Jiteng Wan ◽  
Chunji Jin ◽  
Banghai Liu ◽  
Zonglian She ◽  
Mengchun Gao ◽  
...  

Even in a trace amounts, the presence of antibiotics in aqueous solution is getting more and more attention. Accordingly, appropriate technologies are needed to efficiently remove these compounds from aqueous environments. In this study, we have examined the electrochemical oxidation (EO) of sulfamethoxazole (SMX) on a Co modified PbO2 electrode. The process of EO of SMX in aqueous solution followed the pseudo-first-order kinetics, and the removal efficiency of SMX reached the maximum value of 95.1 % within 60 min. The effects of major factors on SMX oxidation kinetics were studied in detail by single-factor experiments, namely current density (1?20 mA cm-2), solution pH value (2?10), initial concentration of SMX (10?500 mg L-1) and concentration of electrolytes (0.05?0.4 mol L-1). An artificial neural network (ANN) model was used to simulate this EO process. Based on the obtained model, particle swarm optimization (PSO) was used to optimize the operating parameters. The maximum removal efficiency of SMX was obtained at the optimized conditions (e.g., current density of 12.37 mA cm-2, initial pH value of 4.78, initial SMX concentration of 74.45 mg L-1, electrolyte concentration of 0.24 mol L-1 and electrolysis time of 51.49 min). The validation results indicated that this method can ideally be used to optimize the related parameters and predict the anticipated results with acceptable accuracy.


2021 ◽  
Vol 900 (1) ◽  
pp. 012003
Author(s):  
M Balintova ◽  
Z Kovacova ◽  
S Demcak ◽  
Y Chernysh ◽  
N Junakova

Abstract Removal of heavy metals from the environment is important for living beings. The present work investigates the applicability of the natural and MnO2 - coated zeolite as sorbent for the removal of copper from synthetic solutions. Batch experiments were carried out to identify the influence of initial pH and concentration in the process of adsorption. A maximum removal efficiency of Cu(II) was observed in 10 mg/L for natural (95.6%) and modified (96.4%) zeolite, where the values was almost identical, but at concentration of 500 mg/L was the removal efficiency of modified zeolite three times higher. Based on the correlation factors R2, the Langmuir isotherms better describe the decontamination process than Freundlich. The optimum pH value was set at 5.0.


2011 ◽  
Vol 255-260 ◽  
pp. 2797-2801
Author(s):  
Chen Yao ◽  
Chun Juan Gan ◽  
Jian Zhou

Effect of environment factors such as initial pH value, dissolved oxygen (DO) and temperature on phosphorus removal efficiency of phosphate reduction system was discussed in treating pickled mustard tube wastewater. Results indicate that environment factors have significant influence on dephosphorization efficiency. And, the impact of DO on phosphate reduction is mainly by affecting the distribution of micro-environment inner biofilm, manifest as phosphate removal rate decreased with a fall in DO concentration, while overhigh DO can lead to detachment of biofilm, thus causing the increase of effluent COD concentration, and so DO need to be controlled in the range of 6 mg/L. Moreover, a higher temperature is more beneficial to phosphorus removal by PRB. Unfortunately, exorbitant temperature can result in mass rearing of Leuconostoc characterized with poor flocculability in reactor, and that cause turbidity in effluent appeared as a rise in COD of effluent. Hence, the optimal temperature is found to be about 30°C.


2013 ◽  
Vol 807-809 ◽  
pp. 1355-1361
Author(s):  
Fang Yuan ◽  
Jin Guo Dai ◽  
Zhi Hui Liang ◽  
Hong Bo Fan ◽  
Si Hao Lv

The removal of high concentration ammonia in wastewater was investigated by an indirect electrochemical oxidation method using titanium electrodes coated with ruthenium and iridium (RuO2-IrO2-TiO2/Ti). The effect of different initial pH on ammonia removal by electrochemical oxidation was studied. The concentrations variation of ammonia, total nitrogen, nitrate nitrite, and free cholorines, chloramines was analyzed under the conditions with and without pH controlling. The results indicate that ammonia removal efficiency was higher under the moderate alkaline condition than that under neutral one. During the electrolysis process, nitrate and nitrite concentrations were very low, even below their detecting limits. The concentrations of free chlorines and chloramines were significantly affected by pH, as trichloramine and free chlorines were mainly produced in the reaction without pH controlling, while monochloramine was mainly produced in a stable alkalescene.


2016 ◽  
Vol 703 ◽  
pp. 306-310
Author(s):  
Min Hong Xu ◽  
Jian Li Ma ◽  
Meng Xia Qian ◽  
Hui Na Qin

Oxidative decolorization of azo dyes with a heterogeneous catalyst copper phthalocyanine supported Mg-Al hydrotalcites was studied and the influence factors such as initial pH value, temperature, H2O2 and CuPc-LDHs/H2O2 system were discussed. The results indicated that acidic solution and high temperature were conducive to oxidative decoloration of methyl orange. CuPc-LDHs/H2O2 system showed excellent oxidative decoloration capacity to remove azo dyes. The effects of oxidative decolorization of azo dyes were related to the molecular structure and weight of azo dyes. Oxidative decoloration effects followed the order as congo red > amido black > methyl blue> methyl orange> methylene blue.


Author(s):  
Yonghua Lu ◽  
Weiwei Gao ◽  
Fang Xu ◽  
Guangxian Zhang ◽  
Fengxiu Zhang

<p>In order to improve the catalytic degradation property of α-FeOOH, α-FeOOH was doped with sodium silicate. The α-FeOOH doped with silicon was used as catalyst to catalyze the degradation of methyl orange. The XRD spectra showed that the crystalline phase of α-FeOOH doped with silicon was same as that of α-FeOOH; The catalytic degradation property of α-FeOOH doped with silicon was 21.7% higher than that of α-FeOOH; The results showed that catalytic degradation of methyl orange was almost degraded thoroughly at the conditions that the concentration of α-FeOOH doped with silicon in the solution was 0.73 g/L, the concentration of H<sub>2</sub>O<sub>2</sub> was 0.231 mmol/L. The pH value was between 2 and 3, and the degradation reaction was carried out at 60 <sup>o</sup>C for at least 20 min. Copyright © 2016 BCREC GROUP. All rights reserved </p><p><em>Received: 5<sup>th</sup> November 2015; Revised: 9<sup>th</sup> January 2016; Accepted: 13<sup>rd</sup> January 2016</em></p><p><strong>How to Cite</strong>: Lu, Y., Gao, W., Xu, F., Zhang, G., Zhang, F. (2016). The Catalytic Degradation Performance of α-FeOOH Doped with Silicon on Methyl Orange.<em> Bulletin of Chemical Reaction Engineering &amp; Catalysis</em>, 11 (1): 120-124. (doi:10.9767/bcrec.11.1.434.120-124)</p><p><strong>Permalink/DOI</strong>: <a href="http://dx.doi.org/10.9767/bcrec.11.1.434.120-124">http://dx.doi.org/10.9767/bcrec.11.1.434.120-124</a></p><p> </p>


2021 ◽  
Vol 11 (18) ◽  
pp. 8401
Author(s):  
Rachid El Brychy ◽  
Mohamed Moutie Rguiti ◽  
Nadia Rhazzane ◽  
Moulay Driss Mellaoui ◽  
Khalid Abbiche ◽  
...  

Today, organic wastes (paints, pigments, etc.) are considered to be a major concern for the pollution of aqueous environments. Therefore, it is essential to find new methods to solve this problem. This research was conducted to study the use of electrochemical processes to remove organic pollutants (e.g., crystal violet (CV)) from aqueous solutions. The galvanostatic electrolysis of CV by the use of Ti/Pt/SnO2 anode, were conducted in an electrochemical cell with 100 mL of solution using Na2SO4 and NaCl as supporting electrolyte, the effect of the important electrochemical parameters: current density (20–60 mA cm−2), CV concentration (10–50 mg L−1), sodium chloride concentration (0.01–0.1 g L−1) and initial pH (2 to 10) on the efficiency of the electrochemical process was evaluated and optimized. The electrochemical treatment process of CV was monitored by the UV-visible spectrometry and the chemical oxygen demand (COD). After only 120 min, in a 0.01mol L−1 NaCl solution with a current density of 50 mA cm−2 and a pH value of 7 containing 10 mg L−1 CV, the CV removal efficiency can reach 100%, the COD removal efficiency is up to 80%. The process can therefore be considered as a suitable process for removing CV from coloured wastewater in the textile industries.


2018 ◽  
Vol 16 (1) ◽  
pp. 1283-1296 ◽  
Author(s):  
Shoujian Song ◽  
Changchun Hao ◽  
Xianggang Zhang ◽  
Qing Zhang ◽  
Runguang Sun

AbstractIn the present study, the Fe-doped TiO2 modified nanoparticles was successfully synthesized by the combination of the sol-gel method and heat treatment, and the degradation of methyl orange was tested by the combination method of ultrasonic radiation and mechanical agitation. The effects of different factors on the degradation of methyl orange (MO) solution were studied, such as ultrasonic irradiation time, the ultrasonic frequency, the added amount of catalyst, the initial pH value, the initial concentration of methyl orange, and revolutions per minute. The optimal experimental conditions for sonocatalytic degradation of the MO obtained were: ultrasonic irradiation time = 60 min, pH value = 3.0 and revolutions per minute = 500 rpm. By means of response surface analysis, the best fitting conditions were as follows: ultrasonic frequency = 36.02 kHz, added amount of catalyst = 490.50 mg/L, the initial concentration of methyl orange = 9.22 mg/L, and the optimum condition was close to the experimental data by response surface method. Under optimal conditions, the sonocatalytic degradation of MO was 99%. The degradation of MO showed that the combination of Fe-doped modified TiO2 nanoparticles, mechanical agitation and ultrasonic irradiation was discovered that can degrade methyl orange effectively in aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document