Reduction of nutrient contaminants into shallow eutrophic waters through vegetated treatment beds

2013 ◽  
Vol 68 (6) ◽  
pp. 1280-1287 ◽  
Author(s):  
P. Han ◽  
K. Vijayaraghavan ◽  
S. Reuben ◽  
E. S. Estrada ◽  
U. M. Joshi

One of the most effective mitigative approaches to eutrophication is the reduction of nutrient loading into water bodies. Bioremediation presents an economically viable and ecologically sustainable technology to nutrient pollution control taking advantage of the remarkable ability of plants and their associated microbial community to assimilate and remove nutrients from the environment. In this study, four emergent macrophytes (Cyperus haspan, Pandanus amaryllifolius, Pontederia cordata and Thalia geniculata) and two floating plants (Hygroryza aristata and Pistia stratiotes) were deployed in bank-side treatment beds and comparatively assessed for their remediative capabilities for nutrient control. P. stratiotes exhibited the highest removal efficiency for both nitrate and phosphate among the six plant species studied. Emergent macrophytes, P. amaryllifolius, C. haspan and P. cordata, were also found to be highly effective in nutrient uptake exhibiting removal efficiencies up to 100%. With the exception of T. geniculata, depletion of nutrients as a result of plant uptake significantly impeded the natural colonization of algae invariably leading to improvements in water quality in terms of turbidity and pH. Suppression of algae proliferation by T. geniculata was not preceded by a reduction in nutrient concentrations suggesting that T. geniculata may be directly inhibiting algal growth through allelopathy.

1999 ◽  
Vol 39 (12) ◽  
pp. 99-107 ◽  
Author(s):  
Takao Kunimatsu ◽  
Miki Sudo ◽  
Takeshi Kawachi

In the last ten years, the number of golf courses has been increasing in some countries as the game gains popularity. This indicates, a need to estimate the nutrient loading from golf courses in order to prevent the eutrophication of water bodies. Nutrient concentrations and flow rates of a brook were measured once a week from 1989 to 1990 at two sites: Site A of a brook flowing out from D-golf course (53 ha) and Site B of the same brook discharging into the golf course from an upper forested basin (23 ha) covered mainly with planted Japanese cypress (Chamaecyparis obtusa SIEB. et ZUCC). The bedrock of the area was granite. The annual values of precipitation and mean temperature were 1947 mm and 13.5°C in 1989, respectively. The arithmetic average values of discharge from the forested basin and the golf course were 0.392 and 1.26 mg/l total nitrogen (TN), 0.0072 and 0.145 mg/l total phosphorus (TP), 0.82 and 3.53 mg/l potassium ion (K+, 5.92 and 8.24 mg/l sodium ion (Na+), 2.1 and 9.9 mg/l suspending solid (0.001–2.0 mm, SS), 0.087 and 0.147 mS/cm electric conductivity (EC), and 0.031 and 0.037 m3/km2•s specific discharge, respectively. The loading rates of the forested basin and the golf course were 5.42 and 13.5 TN, 0.133 and 3.04 TP, 8.84 and 33.9 K+, 55.0 and 73.0 Na+, and 54.3 and 118 SS in kg/ha•y. The leaching and runoff rate of nitrogen in the chemical fertilizers applied on the golf course was calculated as 32%. These results indicated the importance of controlling the phosphorus loading for the management of golf courses.


1995 ◽  
Vol 52 (8) ◽  
pp. 1803-1811 ◽  
Author(s):  
Karl E. Havens

Deviations among Carlson's trophic state index values were used to quantify a 12-year history of seston composition and underwater light attenuation in Lake Okeechobee, Florida, U.S.A. Deviations between chlorophyll a, total phosphorus, and transparency-based trophic state indices indicated that (i) light attenuation is generally dominated by phosphorus-rich abiotic particles; (ii) abiotic light attenuation is maximal in a central lake region overlying soft mud sediments, and minimal in a near-littoral region overlying hard sand; and (iii) there has been a progressive increase in the relative contribution of algal pigments to total light attenuation between 1980 and 1992. Coincident with that 12-year trend, there have been declines in external nitrogen loads, lake water nitrogen:phosphorus ratios, and wind velocities. Surface water temperatures in the lake have significantly increased. Explanations for the trend in light attenuation include (i) more favorable meteorological conditions for algal growth, which increased the contribution of algae to overall light attenuation and (ii) reduced nitrogen:phosphorus ratios favoring proliferation of buoyant cyanobacteria, which are more effectively sampled by surface water monitoring. In either case, the trend did not coincide historically with enhanced nutrient loading, the common cause of algal proliferation in lakes.


2001 ◽  
Vol 1 ◽  
pp. 605-614 ◽  
Author(s):  
J.H. Janse ◽  
W. Ligtvoet ◽  
S. Van Tol ◽  
A.H.M. Bresser

Shallow lakes respond in different ways to changes in nutrient loading (nitrogen, phosphorus). These lakes may be in two different states: turbid, dominated by phytoplankton, and clear, dominated by submerged macrophytes. Both states are self-stabilizing; a shift from turbid to clear occurs at much lower nutrient loading than a shift in the opposite direction. These critical loading levels vary among lakes and are dependent on morphological, biological, and lake management factors. This paper focuses on the role of wetland zones. Several processes are important: transport and settling of suspended solids, denitrification, nutrient uptake by marsh vegetation (increasing nutrient retention), and improvement of habitat conditions for predatory fish. A conceptual model of a lake with surrounding reed marsh was made, including these relations. The lake-part of this model consists of an existing lake model named PCLake[1]. The relative area of lake and marsh can be varied. Model calculations revealed that nutrient concentrations are lowered by the presence of a marsh area, and that the critical loading level for a shift to clear water is increased. This happens only if the mixing rate of the lake and marsh water is adequate. In general, the relative marsh area should be quite large in order to have a substantial effect. Export of nutrients can be enhanced by harvesting of reed vegetation. Optimal predatory fish stock contributes to water quality improvement, but only if combined with favourable loading and physical conditions. Within limits, the presence of a wetland zone around lakes may thus increase the ability of lakes to cope with nutrients and enhance restoration. Validation of the conclusions in real lakes is recommended, a task hampered by the fact that, in the Netherlands, many wetland zones have disappeared in the past.


Hydrology ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 123
Author(s):  
Seth Michael Barrus ◽  
Gustavious Paul Williams ◽  
A. Woodruff Miller ◽  
M. Brett Borup ◽  
LaVere B. Merritt ◽  
...  

We describe modified sampling and analysis methods to quantify nutrient atmospheric deposition (AD) and estimate Utah Lake nutrient loading. We address criticisms of previous published collection methods, specifically collection table height, screened buckets, and assumptions of AD spatial patterns. We generally follow National Atmospheric Deposition Program (NADP) recommendations but deviate to measure lake AD, which includes deposition from both local and long-range sources. The NADP guidelines are designed to eliminate local contributions to the extent possible, while lake AD loads should include local contributions. We collected side-by-side data with tables at 1 m (previous results) and 2 m (NADP guidelines) above the ground at two separate locations. We found no statistically significant difference between data collected at the different heights. Previous published work assumed AD rates would decrease rapidly from the shore. We collected data from the lake interior and show that AD rates do not significantly decline away from the shore. This demonstrates that AD loads should be estimated by using the available data and geostatistical methods even if all data are from shoreline stations. We evaluated screening collection buckets. Standard unscreened AD samples had up to 3-fold higher nutrient concentrations than screened AD collections. It is not clear which samples best represent lake AD rates, but we recommend the use of screens and placed screens on all sample buckets for the majority of the 2020 data to exclude insects and other larger objects such as leaves. We updated AD load estimates for Utah Lake. Previous published estimates computed total AD loads of 350 and 153 tons of total phosphorous (TP) and 460 and 505 tons of dissolve inorganic nitrogen (DIN) for 2017 and 2018, respectively. Using updated collection methods, we estimated 262 and 133 tons of TP and 1052 and 482 tons of DIN for 2019 and 2020, respectively. The 2020 results used screened samplers with lower AD rates, which resulted in significantly lower totals than 2019. We present these modified methods and use data and analysis to support the updated methods and assumptions to help guide other studies of nutrient AD on lakes and reservoirs. We show that AD nutrient loads can be a significant amount of the total load and should be included in load studies.


2017 ◽  
Vol 33 (5) ◽  
Author(s):  
Aditi Mullick ◽  
Sudarsan Neogi

AbstractThe uncontrolled proliferation of algae and algal blooms due to excessive nutrient loading in natural and industrial water bodies is a major issue for water quality maintenance. It reduces usability of the water, imposes hazardous effects of algal toxins released from algal blooms, and creates nuisance in the operation of several industrial water units. Among several existing water treatment methods to diminish the post-algae growth effects, ultrasonication has emerged as an environmentally safe technology that does not involve any use of algaecide. The interaction of several parameters, including climatic and environmental conditions with algae growth rate, have been reviewed in this article. The effects of different acoustic operating conditions for inhibition of algae growth have also been discussed. Concern about high energy consumption led other technologies to be integrated with ultrasonication. It has enhanced the process efficiency and reduced the energy consumption as reported in some long-term field investigations and patent proposals. Several issues that require further research for making this technology widely applicable or to install an effective system design have been highlighted in this article.


2009 ◽  
Vol 6 (12) ◽  
pp. 2935-2948 ◽  
Author(s):  
T. J. S. Cox ◽  
T. Maris ◽  
K. Soetaert ◽  
D. J. Conley ◽  
S. Van Damme ◽  
...  

Abstract. We report a 40 year record of eutrophication and hypoxia on an estuarine ecosystem and its recovery from hypereutrophication. After decades of high inorganic nutrient concentrations and recurring anoxia and hypoxia, we observe a paradoxical increase in chlorophyll-a concentrations with decreasing nutrient inputs. We hypothesise that algal growth was inhibited due to hypereutrophication, either by elevated ammonium concentrations, severe hypoxia or the production of harmful substances in such a reduced environment. We study the dynamics of a simple but realistic mathematical model, incorporating the assumption of algal growth inhibition. It shows a high algal biomass, net oxygen production equilibrium with low ammonia inputs, and a low algal biomass, net oxygen consumption equilibrium with high ammonia inputs. At intermediate ammonia inputs it displays two alternative stable states. Although not intentional, the numerical output of this model corresponds to observations, giving extra support for assumption of algal growth inhibition. Due to potential algal growth inhibition, the recovery of hypereutrophied systems towards a classical eutrophied state, will need reduction of waste loads below certain thresholds and will be accompanied by large fluctuations in oxygen concentrations. We conclude that also flow-through systems, heavily influenced by external forcings which partly mask internal system dynamics, can display multiple stable states.


2020 ◽  
Vol 43 (8) ◽  
pp. 2015-2033 ◽  
Author(s):  
David R. Plew ◽  
John R. Zeldis ◽  
Bruce D. Dudley ◽  
Amy L. Whitehead ◽  
Leigh M. Stevens ◽  
...  

Abstract We developed a method to predict the susceptibility of New Zealand estuaries to eutrophication. This method predicts macroalgae and phytoplankton responses to potential nutrient concentrations and flushing times, obtained nationally from simple dilution models, a GIS land-use model and physical estuary properties. Macroalgal response was based on an empirically derived relationship between potential nitrogen concentrations and an established macroalgal index (EQR) and phytoplankton response using an analytical growth model. Intertidal area was used to determine which primary producer was likely to lead to eutrophic conditions within estuaries. We calculated the eutrophication susceptibility of 399 New Zealand estuaries and assigned them to susceptibility bands A (lowest expected impact) to D (highest expected impact). Twenty-seven percent of New Zealand estuaries have high or very high eutrophication susceptibilities (band C or D), mostly (63% of band C and D) due to macroalgae. The physical properties of estuaries strongly influence susceptibility to macroalgae or phytoplankton blooms, and estuaries with similar physical properties cluster spatially around New Zealand’s coasts. As a result, regional patterns in susceptibility are apparent due to a combination of estuary types and land use patterns. The few areas in New Zealand with consistently low estuary eutrophication susceptibilities are either undeveloped or have estuaries with short flushing times, low intertidal area and/or minimal tidal influx. Estuaries with conditions favourable for macroalgae are most at risk. Our approach provides estuary-integrated susceptibility scores likely to be of use as a regional or national screening tool to prioritise more in-depth estuary assessments, to evaluate likely responses to altered nutrient loading regimes and assist in developing management strategies for estuaries.


2009 ◽  
Vol 27 (spe) ◽  
pp. 879-886 ◽  
Author(s):  
D Martins ◽  
R.A Pitelli ◽  
M.S Tomazella ◽  
R.H Tanaka ◽  
A.C.P Rodrigues

O objetivo deste trabalho foi identificar as plantas aquáticas e os níveis de infestação de cada espécie em Porto Primavera antes do enchimento final do reservatório. Foram avaliados todos os focos de vegetação aquática no reservatório (72 pontos), sendo os pontos demarcados com um aparelho de GPS. As espécies foram identificadas e estimouse visualmente (tamanho da área) a distribuição proporcional das plantas no foco de infestação. Após a identificação, foram encontradas 18 espécies de plantas aquáticas vegetando no reservatório, das quais foram determinadas a frequência de espécie de planta aquática e a distribuição dentro do sistema de geração de energia. As espécies encontradas no reservatório foram: Eichhornia crassipes, Eichhornia azurea, Pistia stratiotes, Paspalum repens, Cyperus brevifolius, Paspalum conspersum, Echinochloa polystachya, Egeria densa, Egeria najas, Polygonum hidropiperoides, Polygonum lapathifolium, Alternanthera philoxeroides, Eleocharis sellowiana, Nymphaea ampla, Pontederia cordata, Salvinia auriculata, Salvinia rotundifolia e Typha angustifolia. As maiores frequências relativas foram observadas em: E. azurea (36,11%), E. crassipes (16,67%), P. stratiotes (13,89%), S. auriculata (13,89%), C. brevifolius (11,11%) e P. lapathifolium (6,94%).


Author(s):  
Sidinei Magela Thomaz ◽  
Luis Maurício Bini ◽  
Maria Conceição de Souza ◽  
Kazue Kawakita Kita ◽  
Antonio Fernando Monteiro Camargo

In a survey of the aquatic macrophytes of the Itaipu Reservoir, we identified 62 taxa in 25 families and 42 genera. The highest number taxa was observed for the emergent macrophytes (40 taxa). Reduced fluctuation in water level, increased light penetration, and sediment enrichment by nutrients and organic matter following the formation of the reservoir favored the appearance of a species-rich community of submerged macrophytes (23% of the taxa identified). The aquatic macrophytes were found mainly near the mouths of the main tributaries of the reservoir, in shallow area of depth less than 2 meters. In addition to the shallow depth, the greater nutrient input from the tributaries and relative protection from wind explained this distribution. Among the species found, Egeria najas merits mention for its occurrence in all localities sampled, with biomass values varying between 98 and 186 gDW/m². Some potential nuisance species such as Eichhornia crassipes, Salvinia auriculata, and Pistia stratiotes also deserve attention, since they were also observed to be covering large areas of Itaipu Reservoir.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1409 ◽  
Author(s):  
Hye Won Lee ◽  
Yong Seok Lee ◽  
Jonggun Kim ◽  
Kyoung Jae Lim ◽  
Jung Hyun Choi

Sediment plays an important role in the water quality of a lake by acting as both a nutrient source and sink. The amount of phosphorus and nitrogen in the water depends on the internal load from the sediment as well as the external load. To estimate the effects of sediment load on the water quality of a reservoir, we applied a three-dimensional hydrodynamic and transport model based on the benthic chamber experimental results at Euiam Lake, South Korea. As shown in the sensitivity analysis results, the eutrophication period could be significantly extended by a change of phosphorus flux rates from the sediments. The increased phosphorus flux from the sediments intensifies the algal growth of Euiam Lake, which could cause serious algal bloom during spring and fall. This study provides information on nutrient concentrations in the sediment of Euiam Lake, verifies the role of the sediment as a source or sink of nutrients, and evaluates the effect of sediment release of nutrients and contaminants on water quality. This research is a useful tool in determining the effects of internal load in lakes and establishing the operation guideline for sediment management in order to maintain feasible water quality for beneficial use.


Sign in / Sign up

Export Citation Format

Share Document