Adsorption of crude and engine oils from water using raw rice husk

2013 ◽  
Vol 69 (5) ◽  
pp. 947-952 ◽  
Author(s):  
Zahra Razavi ◽  
Nourollah Mirghaffari ◽  
Behzad Rezaei

The raw rice husk (RRH) was used as a low cost adsorbent to remove three oil compounds with different viscosities (crude oil, engine oil and spent engine oil) from an aqueous environment. Some of the sorbent specifications were characterized using a CHNSO analyzer, Fourier transform infrared, scanning electron microscope and inductively coupled plasma spectroscopy. With decreasing RRH particles size, the oil adsorption percentage was reduced for crude, spent and engine oils from 50 to 30%, 65 to 20% and 70 to 0.01%, respectively. This was probably due to damage of the microcavities. The removal percentage by sorbent at optimized conditions was 88, 80 and 55% for engine, spent and crude oils, respectively, corresponding to their descending viscosity. The adsorption of crude and spent oils on rice husk followed the Freundlich isotherm model, while the adsorption of engine oil was fitted by the Langmuir model. The maximum adsorption capacity (qmax), calculated from the Langmuir model for the adsorption of engine oil on RRH, was 1,250 mg/g.

2021 ◽  
Author(s):  
Zuhal Yolcu ◽  
Meryem Çıtlakoğlu

Abstract A novel [Cd(maa)2(vim)2H2O]·H2O monomer complex was synthesized using methacrylic acid (maaH) and 1-vinylimidazole (vim) that are suitable ligands for polymerization with cadmium central atom. Cd(II)-IIP was prepared by precipitation polymerization technique using monomer complex, EGDMA, and AIBN as functional monomer, crosslinker, and initiator, respectively. The structure of the monomer complex was elucidated by single-crystal X-ray diffraction method. Infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA) methods were used for characterization both of the monomer complex and Cd(II)-IIP. Scanning electron microscopy / energy-dispersive X-ray spectroscopy (SEM/EDX) methods were used for observation surface morphology and content of the polymer surfaces. The adsorption performance and selectivity properties of Cd(II)-IIP were also investigated. The maximum adsorption capacity of Cd(II)-IIP was 43.0 mg/g with 250 mg/L initial Cd(II) concentration at pH:6.0, and the selectivity was higher for Cd2+ ions than that of Pb2+, Ni2+, and Zn2+ as competitor ions. The Langmuir and Freundlich isotherm models were applied comparatively to experimental results. Cd(II) ion content of the solutions determined by inductively coupled plasma mass spectrometry (ICP-MS).


2021 ◽  
Vol 12 ◽  
Author(s):  
Deen Dayal Giri ◽  
Maulin Shah ◽  
Neha Srivastava ◽  
Abeer Hashem ◽  
Elsayed Fathi Abd_Allah ◽  
...  

Wastewater is a rich source of valuable chemicals of industrial importance. However, their economic recovery is crucial for sustainability. The objective of the present work is to recover hexavalent chromium (Cr VI) as a value-added transition metal from wastewater cost-effectively; the biosorbent derived from seed kernels of mango (M) and jackfruit (JF) were applied for removing the metal from simulated wastewater. The functional groups of the biomass were analysed with the help of Fourier transform infrared (FTIR) spectroscopy, micrographs were generated using a scanning electron microscope, and crystallinity was determined by an x-ray diffractometer (XRD). The concentration of Cr VI in wastewater was analysed by an inductively coupled plasma optical emission spectrometer (ICP-OES). Process parameters (pH, dose, contact time, temperature, and initial concentration) were optimized for efficient Cr VI adsorption using a response surface methodology-based Box–Behnken design (BBD) employing Design-software 6.0.8. The batch experiment at room temperature at pH 4.8 and Cr VI removal ∼94% (M) and ∼92% (JF) was achieved by using a 60-mg dose and an initial Cr (VI) concentration of 2 ppm in 120 min. The equilibrium Cr binding on the biosorbent was well explained using Freundlich isotherm (R2 = 0.97), which indicated the indirect interactions between Cr (VI) and the biosorbent. Biosorption of Cr (VI) followed the pseudo-order and intra-particle diffusion models. The maximum adsorption capacity of the M and JF bio-adsorbent is 517.24 and 207.6 g/mg, respectively. These efficient, cost-effective, and eco-friendly biosorbents could be potentially applied for removing toxic Cr (VI) from polluted water.


2019 ◽  
Vol 20 (7) ◽  
pp. 1567 ◽  
Author(s):  
Joanna Kluczka ◽  
Gabriela Dudek ◽  
Alicja Kazek-Kęsik ◽  
Małgorzata Gnus

In this study, a chitosan hydrogel supported with ceria (labelled Ce-CTS) was prepared by an encapsulation technique and used for the efficient removal of excess B(III) from aqueous solutions. The functionalisation of chitosan with Ce(IV) and the improvement in the adsorptive behaviour of the hydrogel were determined by SEM-EDS, FTIR, XRD, and inductively coupled plasma optical emission spectrometer (ICP-OES) analyses and discussed. The results demonstrate that Ce-CTS removes boric acid from aqueous solutions more efficiently than either cerium dioxide hydrate or raw chitosan beads, the precursors of the Ce-CTS biosorbent. The maximum adsorption capacity of 13.5 ± 0.9 mg/g was achieved at pH 7 after 24 h. The equilibrium data of boron adsorption on Ce-CTS fitted the Freundlich isotherm model, while the kinetic data followed the Elovich pseudo-second-order model, which indicated that the process was non-homogeneous. The dominant mechanism of removal was the reaction between boric acid molecules and hydroxyl groups bound to the ceria chelated by chitosan active centres. Due to its high efficiency in removing boron, good regeneration capacity and convenient form, Ce-CTS may be considered a promising biosorbent in water purification.


2013 ◽  
Vol 706-708 ◽  
pp. 478-482
Author(s):  
Nan Chen ◽  
Yong Sheng Shi ◽  
Meng Zhao ◽  
Meng Ru Xuan

Antimony distributes widely in the environment. And antimony pollution in the water environment is becoming serious. How to detect the content of the antimony correctly and effectively is very important. Graphite furnace atomic absorption method is simple, but low sensitivity; hydride generation atomic fluorescence spectrometry, low cost, good reproducibility, but is harmful to the introduction of substances; inductively coupled plasma mass spectrometry for simultaneous multi-element analysis, high sensitivity, but the operation is cumbersome; inductively coupled plasma spectrometry has low detection limit, high accuracy, but the equipment is expensive, and cost of analysis is high.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Ankur Gupta ◽  
Chandrajit Balomajumder

Fe modified rice husk was prepared as a low cost biosorbent for the removal of Cr(VI) and phenol both singly and in combination from single and binary simulated synthetic waste water. Rice husk was modified by treating with FeSO4·7H2O. The results showed that impregnation of iron onto the surface of rice husk improved the adsorption capability of both Cr(VI) and phenol. The effects of process parameters for multicomponent system such as pH, adsorbent dose, and contact time onto the percentage removal of both Cr(VI) and phenol were investigated. The experimental data for the adsorption of both Cr(VI) and phenol onto the surface of Fe modified rice husk applied to various kinetic and adsorption isotherm models. Multicomponent isotherm models such as Nonmodified Langmuir, Modified Langmuir, Extended Langmuir, Extended Freundlich, Competitive Nonmodified Redlich Peterson, Competitive Modified Redlich Peterson were applied. The results show that Extended Freundlich model best described the experimental data for both Cr(VI) and phenol from binary solution. Pseudo second-order model agreed well with Cr(VI) while pseudo first-order model agreed well with phenol. Maximum adsorption capacity in synthetic binary solution of Cr(VI) and phenol was found to be 36.3817 mg g−1for Cr(VI) and 6.569 mg g−1for phenol, respectively.


2011 ◽  
Vol 99 (3) ◽  
pp. 033510 ◽  
Author(s):  
Chang-Hong Shen ◽  
Jia-Min Shieh ◽  
Jung Y. Huang ◽  
Hao-Chung Kuo ◽  
Chih-Wei Hsu ◽  
...  

2013 ◽  
Vol 68 (8) ◽  
pp. 1873-1879 ◽  
Author(s):  
Chongxia Wang ◽  
Qingping Song ◽  
Jiangang Gao

N-carboxymethyl chitosan (NCMC) was prepared by reacting chitosan (CTS) with chloroacetic acid and characterized by 13C-NMR spectroscopy to confirm that carboxymethylation occurred only in the amino groups. The adsorption properties of CTS, NCMC and O-carboxymethyl chitosan (OCMC) towards Pb(II) ions were evaluated and the order of the adsorption capacity was as follows: NCMC > OCMC > CTS. The effects of initial pH value (2.0–5.5) of the solutions and contact time (5–120 min) on adsorption of Pb(II) were investigated and the kinetic data were evaluated using the pseudo-first-order and pseudo-second-order models. Kinetics study showed that the adsorption process followed second-order kinetics rather than the first-order one. Furthermore, the experimental equilibrium data of Pb(II) on the NCMC were analyzed using the Langmuir and Freundlich isotherm models and the results indicated that the Langmuir model gave a better fit than the Freundlich equation and the maximum adsorption capacity obtained from the Langmuir model was 421.9 mg g−1.


Chemija ◽  
2019 ◽  
Vol 30 (3) ◽  
Author(s):  
Aušrinė Zabielaitė ◽  
Aldona Balčiūnaitė ◽  
Dijana Šimkūnaitė ◽  
Jūratė Vaičiūnienė ◽  
Algirdas Selskis ◽  
...  

This work presents the investigation of the electrochemical oxidation of hydrazine and sodium borohydride ions in alkaline solutions on the Au nanoparticles modified ZnCo coating surface, which was deposited on the titanium substrate (termed as AuZnCo/Ti). The AuZnCo/Ti catalysts were prepared via a facile electrochemical deposition technique followed by a simple and low-cost galvanic displacement. Scanning electron microscopy, energy dispersive X-ray analysis and inductively coupled plasma optical emission spectroscopy were used for characterization of the prepared catalysts surface morphology, structure and composition, whereas their electrocatalytic behaviour was investigated for the electrochemical oxidation of hydrazine and sodium borohydride in an alkaline medium using cyclic voltammetry. It has been determined that the AuZnCo/Ti catalysts with Au loadings of 31, 63 and 306 µg cm–2 show enhanced catalytic activity towards the electrochemical oxidation of both hydrazine and sodium borohydride as compared to that of the ZnCo/Ti catalyst.


2020 ◽  
Vol 15 (2) ◽  
pp. 525-537 ◽  
Author(s):  
Neza Rahayu Palapa ◽  
Tarmizi Taher ◽  
Bakri Rio Rahayu ◽  
Risfidian Mohadi ◽  
Addy Rachmat ◽  
...  

The preparation of CuAl LDH and biochar (BC) composite derived from rice husk and its application as a low-cost adsorbent for enhanced adsorptive removal of malachite green has been studied. The composite was prepared by a one-step coprecipitation method and characterized by X-ray Diffraction (XRD), Fourier Transform Infra Red (FTIR), Brunauer-Emmett-Teller (BET), and Scanning Electron Microscopy - Energy Dispersive X-ray (SEM−EDX). The result indicated that CuAl LDH was successfully incorporated with the biochar that evidenced by the broadening of XRD peak at 2θ = 24° and the appearance of a new peak at 1095 cm−1 on the FTIR spectra. The BET surface area analysis revealed that CuAl/BC composite exhibited a larger surface area (200.9 m2/g) that the original CuAl LDH (46.2 m2/g). Surface morphological changes also confirmed by SEM image, which showed more aggregated particles. The result of the adsorption study indicated the composite material was efficient in removing malachite green with Langmuir maximum adsorption capacity of CuAl/BC reaching 470.96 mg/g, which is higher than the original CuAl LDH 59.523 mg/g. The thermodynamic analysis suggested that the adsorption of malachite green occurs spontaneously (ΔG < 0 at all tested temperature) and endothermic nature. Moreover, the CuAl/BC composite showed strong potential as a low-cost adsorbent for cationic dye removal since it showed not only a high adsorption capacity but also good reusability. Copyright © 2020 BCREC Group. All rights reserved


Sign in / Sign up

Export Citation Format

Share Document