An experimental study on bioremediation and photolysis of enrofloxacin

2014 ◽  
Vol 70 (5) ◽  
pp. 932-938 ◽  
Author(s):  
Ghasem Zamanpour ◽  
Arjomand Mehrabani-Zeinabad

Recent studies have identified the occurrence of a vast number of pharmaceuticals into the municipal wastewater through excreted urine and feces. Some of these pharmaceutical compounds are degraded in the environment. However, there have been reports on the presence of pharmaceutical active compounds in drinking water. Concerns have been raised over the potential adverse effects of these pharmaceuticals on public health and the aquatic environment. In order to investigate the removal process of pharmaceutical enrofloxacin, a unit consisting of a structured packing rotating biological contactor (spRBC) was designed and constructed as a biological treatment unit. The removal rate reached a maximum of 70% in this biological unit. In the meantime, the effect of photolysis process on the effluent of the biological unit was also studied. In the direct photolysis, the removal performance reached 51% and by adding H2O2 the removal efficiency was increased to 87%. The removal efficiency for the entire system including spRBC and an ultraviolet radiation unit was 94%.

2018 ◽  
Vol 78 (9) ◽  
pp. 1843-1851 ◽  
Author(s):  
İ. Çelen-Erdem ◽  
E. S. Kurt ◽  
B. Bozçelik ◽  
B. Çallı

Abstract The sludge digester effluent taken from a full scale municipal wastewater treatment plant (WWTP) in Istanbul, Turkey, was successfully deammonified using a laboratory scale two-stage partial nitritation (PN)/Anammox (A) process and a maximum nitrogen removal rate of 1.02 kg N/m3/d was achieved. In the PN reactor, 56.8 ± 4% of the influent NH4-N was oxidized to NO2-N and the effluent nitrate concentration was kept below 1 mg/L with 0.5–0.7 mg/L of dissolved oxygen and pH of 7.12 ± 12 at 24 ± 4°C. The effluent of the PN reactor was fed to an upflow packed bed Anammox reactor where high removal efficiency was achieved with NO2-N:NH4-N and NO3-N:NH4-N ratios of 1.32 ± 0.19:1 and 0.22 ± 0.10:1, respectively. The results show that NH4-N removal efficiency up to 98.7 ± 2.4% and total nitrogen removal of 87.7 ± 6.5% were achieved.


2013 ◽  
Vol 807-809 ◽  
pp. 694-698
Author(s):  
Rong Xin Huang ◽  
Zhen Xing Wang ◽  
Gang Liu ◽  
Qi Jin Luo

In order to guarantee the reliability and security of reclaiming water, research on the removal efficiency of the environmental endocrine chemicals (EDCs) --the Phthalate Esters (PAEs) in conventional secondary activated sludge and wastewater reclamation and reuse process was undergoing at Harbin wastewater treatment plant (WWTP). The wastewater samples were colleted from every unit effluent of WWTP. The results showed that contamination of EDCs were presented in municipal wastewater at Harbin and the concentrations of the four PAEs were 21.01μg/L for Di-n-butyl Phthalate (DBP); 9.63μg/L for Di-n-octyl Phthalate (DnOP); 4.56μg/L for Diethyl Phthalate (DEP); 1.96μg/L for Dimethyl Phthalate (DMP) respectively in the influent. The conventional activated sludge has good removal efficiencies performance on DMP, DEP and DBP. With the increasing of molecular weight and branch chains of PAEs contaminations, the removal rate of the four PAEs in the conventional activated sludge process decreased from 99.82%(DMP),90.60%(DEP),90.10%(DBP) to the only 45.13% removal rate for DnOP, which was mostly removed from primary treatment but no from secondary activated sludge process; Coagulation-air flotation plus filtration process was not a feasible way to remove PAEs from reclaiming treatment units.


1991 ◽  
Vol 18 (6) ◽  
pp. 940-944 ◽  
Author(s):  
J. B. Sérodes ◽  
E. Walsh ◽  
O. Goulet ◽  
J. de la Noue ◽  
C. Lescelleur

Design criteria of a pilot plant for treating secondary municipal effluents using filamentous, bioflocculating micro-algae were evaluated. Using a sequential batch reactor, the best removal rate of ammonia nitrogen was reached for 25% draw volume; at 20–22 °C, up to four cycles per day could be achieved giving a removal efficiency of approximately 2 g of N per day and per square meter of basin (200 mm deep) with negligible nitrogen residual; increasing the water level by increments of 200 mm (from 200 to 600 mm) increased the N removal efficiency in a way similar to an increase in the number of renewals per day on a 200 mm deep basin. The dominant micro-algae (Chlorhormidium) was heavily influenced by the water temperature. Key words: micro-algae, municipal wastewater, water treatment, ammonia nitrogen, removal rate, removal efficiency.


2012 ◽  
Vol 178-181 ◽  
pp. 376-379
Author(s):  
Fang Li ◽  
Zeng Lu Qi

This paper adopted a 3-stage rotating biological contactor (RBC), while the operating parameters could be controlled properly, this kind of RBC can obtain better removal effect in domestic sewage treatment. At 25oC, when hydraulic retention time (HRT) is 4h ,6h,8h,10h and 12h ,removal rate of COD is 65.14%,86.10%,89.82%,85.93% and 78.58%.HRT fixes on 8h, removal rate of NH3 –N is 75% after adjusting alkalinity. When rotating rate of RBC is 4,6,8,10,12 and 14 r/min, the removal rate of TN is 53.88%,56.78%,60.03%,58.49%,55.32% and 54.87%.RBC also has a good removal efficiency of TP and obtains the removal rate of TP 45%.There is good prospect in domestic sewage treatment with RBC.


2016 ◽  
Vol 74 (7) ◽  
pp. 1602-1609 ◽  
Author(s):  
Long Pang ◽  
Peijie Yang ◽  
Jihong Zhao ◽  
Hongzhong Zhang

Organophosphate esters (OPs), widely used as flame retardants and plasticizers, are regarded as a class of emerging pollutants. The effluent of municipal wastewater treatment plants is generally considered to be the main contributor of OP pollution to the surface water. In this study, anoxic–oxic (AO) and University of Capetown (UCT) processes were selected to investigate the removal efficiency of OPs. The results indicated that the UCT process showed better removal efficiency than that of the AO process. For the chlorinated OPs, approximately 12.3% of tri(2-chloroethyl)phosphate and 11.8% of tri(chloropropyl)phosphate can be removed in the UCT process, which was 12% and 7.8% higher than that of the AO process. In contrast, non-chlorinated OPs, including tris(2-butoxyethyal)phosphate, triphenyl phosphate, and tributyl phosphate, were able to be removed in both processes, with the removal rate of 85.1%, 74.9%, and 29.1% in the AO process, and 88.4%, 63.6%, and 25.2% in the UCT process. Furthermore, linear correlation between the removal rate and logKow of OPs (r2 = 0.539) was observed in the AO process, indicating that OPs with high Kow value (e.g. tri(dichloropropyl)phosphate and triphenyl phosphate) are prone to be removed by adsorption on the residual activated sludge.


2011 ◽  
Vol 63 (9) ◽  
pp. 1967-1973 ◽  
Author(s):  
J.-M. Choubert ◽  
M. Pomiès ◽  
S. Martin Ruel ◽  
M. Coquery

This extensive study aimed at quantifying the concentrations and removal efficiency of 23 metals and metalloids in domestic wastewater passing through full-scale plants. Nine facilities were equipped with secondary biological treatment and three facilities were equipped with a tertiary treatment stage. The metals investigated were Li, B, Al, Ti, V, Cr, Fe, Ni, Co, Cu, Zn, As, Se, Rb, Mo, Ag, Cd, Sn, Sb, Ba, Tl, Pb and U. Particulate and dissolved metals were measured using 24 h composite samples at each treatment stage. In influents, total concentrations of Cd, Sb, Co, Se, U, Ag, V were below a few μg/L, whereas at the other extremity Zn, B, Fe, Ti, Al were in the range of 0.1 to >1 mg/L. It was demonstrated that secondary treatment stage (activated sludge, biodisc and membrane bioreactor) were efficient to remove most metals (removal rate > 70%), with the exception of B, Li, Rb, Mo, Co, As, Sb and V due to their low adsorption capacities. With the tested tertiary stages (polishing pond, rapid chemical settler, ozonation), a removal efficiency was obtained for Ti, Cr, Cd, Cu, Zn, Sn, Pb, Fe, Ag and Al, whereas a little removal (<30%) was obtained for other metals.


1993 ◽  
Vol 28 (10) ◽  
pp. 361-368 ◽  
Author(s):  
Y. Watanabe ◽  
Y. Iwasaki ◽  
S. Masuda

This paper deals with the experimental results obtained by the pilot plant of an upgraded Rotating Biological Contactor(RBC). This is a two-story RBC which is designed to simultaneously achieve the biological oxidation and removal of detached biomass in the trough. The authors constructed a three-stage pilot plant with an octagonal stainless mesh contactor 2 m across to collect the design information of an upgraded RBC. The municipal wastewater treatment was conducted to examine the RBC's performance. According to experimental results, with a contactor rotating speed of 2 rpm.the effluent TOC and NH4−N concentrations were about 10 g/m3 and 5 g/m3, respectively, at the hydraulic loading of 70 l/m2/d, corresponding to a BOD loading of about 8 g/m2/d. The electrical power consumption of the RBC was 0.005 kWh/m2/d at a contactor rotating speed of 1 rpm. A jet mixed separator(JMS) was used as the physico-chemical pre-treatment unit of the RBC. With the addition of a coagulant,simultaneous flocculation and sedimentation of the suspended particles occurred in the JMS. This combined system of the JMS and RBC produced a clean effluent.


2014 ◽  
Vol 1030-1032 ◽  
pp. 292-295
Author(s):  
Tao Mo Zhao ◽  
Feng Gao ◽  
Wei Hong Jin ◽  
Peng Gao

In this paper, saline wastewater was treated by using the UASB anaerobic reactor. The hydraulic retention time (HRT) of the reactor was controlled at 12 h. Research results shows that, the anaerobic activated sludge can effectively treat the saline wastewater. When the influent salinity was 1%, the corresponding COD removal rate of the reactor was 83.3%. In the following study, the influent salinity increased to 2% and 3% step-by-step. The result shows that the COD removal efficiency of the reactor changed little. The COD reduction of the reactor was 87.6% when the influent salinity was 2%. The COD removal rate changed to 85.2% when the influent salinity increased to 3%. The removal rate of NH4+-N and PO43-P also changed little when the influent salinity of the reactor increased form 1% to 3%. It shows that anaerobic activated sludge has good ability of salt tolerance.


Author(s):  
Atieh EBRAHIMI ◽  
Ghasem D. NAJAFPOUR ◽  
Manouchehr NIKZAD

Cheese whey effluent contains biodegradable organic compounds in the range of 40 to 80 g·L–1. In this study, a three–stage rotating biological contactor was fabricated as a bench scale experimental unit to remove organic matters from cheese whey. First, the treatability of cheese whey effluent in the three–stage rotating biological contactor (RBC) was evaluated. Then the effect of extended specific surface area (SSA) and recirculation rate on COD removal was investigated. The obtained results showed that the organic removal rate increased with an increase in loading rate, till other limiting parameters affect the process. Prior to application of the designated modifications to the system, maximum COD removal efficiency at hrts of 24 and 36 h with OLR of 50 gcod·L–1·d–1 was 90 and 92.4%, respectively. The removal efficiency was improved as a result of increasing the SSA and recirculation rate. Also, recirculation rate may assist to increase the DO level of the wastewater, especially at high olrs. To sum up, obtained results showed that whey effluent has been efficiently treated in a continuous operation of bench scale RBC.


1986 ◽  
Vol 18 (7-8) ◽  
pp. 289-296
Author(s):  
C. F. Ouyang ◽  
T. J. Wan

This study investigated and compared the treatment characteristics of three different kinds of biological wastewater treatment plants (including rotating biological contactor, trickling filter and oxidation ditch) which are currently operated in Taiwan. The field investigation of this study concentrated on the following items: the performance of biological oxygen demand (BOD) and suspended solids (SS) removal; the sludge yield rate of BOD removal; the settleability of sludge solids; the properties of sludge thickening; the power consumption and land area requirement per unit volume of wastewater. Finally, based on the results of the field investigation, a comparison of the treatment characteristics of the three different biological treatment processes was evaluated.


Sign in / Sign up

Export Citation Format

Share Document