Global implementation of two shared socioeconomic pathways for future sanitation and wastewater flows

2014 ◽  
Vol 71 (2) ◽  
pp. 227-233 ◽  
Author(s):  
P. J. T. M. van Puijenbroek ◽  
A. F. Bouwman ◽  
A. H. W. Beusen ◽  
P. L. Lucas

Households are an important source of nutrient loading to surface water. Sewage systems without or with only primary wastewater treatment are major polluters of surface water. Future emission levels will depend on population growth, urbanisation, increases in income and investments in sanitation, sewage systems and wastewater treatment plants. This study presents the results for two possible shared socioeconomic pathways (SSPs). SSP1 is a scenario that includes improvement of wastewater treatment and SSP3 does not include such improvement, with fewer investments and a higher population growth. The main drivers for the nutrient emission model are population growth, income growth and urbanisation. Under the SSP1 scenario, 5.7 billion people will be connected to a sewage system and for SSP3 this is 5 billion. Nitrogen and phosphorus emissions increase by about 70% under both SSP scenarios, with the largest increase in SSP1. South Asia and Africa have the largest emission increases, in the developed countries decrease the nutrient emissions. The higher emission level poses a risk to ecosystem services.

1990 ◽  
Vol 22 (7-8) ◽  
pp. 53-60 ◽  
Author(s):  
B. Rabinowitz ◽  
T. D. Vassos ◽  
R. N. Dawson ◽  
W. K. Oldham

A brief review of recent developments in biological nitrogen and phosphorus removal technology is presented. Guidelines are outlined of how current understanding of these two removal mechanisms can be applied in the upgrading of existing wastewater treatment plants for biological nutrient removal. A case history dealing with the upgrading of the conventional activated sludge process located at Penticton, British Columbia, to a biological nutrient removal facility with a design flow of 18,200 m3/day (4.0 IMGD) is presented as a design example. Process components requiring major modification were the headworks, bioreactors and sludge handling facilities.


2018 ◽  
Vol 45 ◽  
pp. 00054 ◽  
Author(s):  
Bozena Mrowiec

The aim of this paper was to review the literature data regarding the physico-chemical characteristic of plastic pollutants discharged with municipal sewage, the practical possibility of removing microplastic particles from wastewater during different treatment steps in WWTPs and the problem of surface water contamination within them. Microplastics (the size range of 1 nm to < 5 mm), have been recognized as an emerging threat, as well as an ecotoxicological and ecological risk for water ecosystems. Municipal wastewater treatment plants (WWTPs) are mentioned as the main point sources of microplastics in an aquatic environment. Microplastic particles can be effectively removed in the primary treatment zones via solids skimming and sludge settling processes. Different tertiary treatment processes such as: gravity sand filtration, discfilter, air flotation and membrane filtration provide substantial additional removal of microplastics, and the efficiency of wastewater treatment process can be at a removal level of 99.9%. Nevertheless, given the large volumes of effluent constantly discharged to receivers, even tertiary level WWTPs may constitute a considerable source of microplastics in the surface water.


2012 ◽  
Vol 573-574 ◽  
pp. 659-662
Author(s):  
Hao Wang

In Tangshan area, the secondary effluent of wastewater treatment plants was used for this study. Horizontal zeolite wetland was carried out treating it. Hydraulic loading rate was the parameters for analyzing the nitrogen and phosphorus removal efficiency of pollutants from the secondary effluent of wastewater treatment plant. Zeolite constructed wetlands showed different behaviors for nitrogen and phosphorus removals.Under the optimum hydraulic loading rate, the primary pollutions were removed to a large extent.


mSystems ◽  
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Pamela Y. Camejo ◽  
Ben O. Oyserman ◽  
Katherine D. McMahon ◽  
Daniel R. Noguera

“CandidatusAccumulibacter phosphatis” is widely found in full-scale wastewater treatment plants, where it has been identified as the key organism for biological removal of phosphorus. Since aeration can account for 50% of the energy use during wastewater treatment, microaerobic conditions for wastewater treatment have emerged as a cost-effective alternative to conventional biological nutrient removal processes. Our report provides strong genomics-based evidence not only that “Ca. Accumulibacter phosphatis” is the main organism contributing to phosphorus removal under microaerobic conditions but also that this organism simultaneously respires nitrate and oxygen in this environment, consequently removing nitrogen and phosphorus from the wastewater. Such activity could be harnessed in innovative designs for cost-effective and energy-efficient optimization of wastewater treatment systems.


2005 ◽  
Vol 51 (11) ◽  
pp. 183-191 ◽  
Author(s):  
C. Schilling ◽  
H. Behrendt ◽  
A. Blaschke ◽  
S. Danielescu ◽  
G. Dimova ◽  
...  

In the framework of the project daNUbs (Nutrient Management in the Danube Basin and its Impact on the Black Sea) the MONERIS emission model is used for the basin wide calculation of nutrient (nitrogen and phosphorus) emissions in the Danube Basin. The MONERIS model was developed and successfully applied for German river catchments. Based on investigations in selected test regions (case studies) the daNUbs approach is to check the applicability of the MONERIS emission model for the specific conditions of the Danube Basin in more detail than is possible with a basin wide application. Six case studies with areas of 400–3,500 km2 and several subcatchments have been selected in order to represent different conditions along the Danube Basin. In this study region intensive data collection and enhanced monitoring has been performed in order to raise the database significantly above the generally available data. Water balance as well as nutrient balance calculations have been performed with the MONERIS model as well as with other approaches. Results are compared to each other and to data from monitoring. Results up till now showed the applicability and sensitivity of the MONERIS approach in different conditions of the Danube Basin (e.g. emissions via groundwater). They indicated that the nitrogen retention in the catchments is well described with the MONERIS model.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1205 ◽  
Author(s):  
Jackeline do S. B. Barbosa ◽  
Valéria R. Bellotto ◽  
Damiana B. da Silva ◽  
Thiago B. Lima

This research investigated the source and fate of different chemical species of N and P on a deep tropical urban reservoir, the artificial Lake Paranoá, located in the city of Brasilia (Brazil). To determine an N and P budget, nutrient input from the external load (four main tributaries and two wastewater treatment plants), internal load (from sediment) and nutrient output (from a downstream dam) were estimated empirically. Nutrient storage was evaluated in two compartments: water column and sediment. Nutrient input from the tributaries varied by season presenting higher loads in the wet season, especially N. Nutrient budgets in our study indicated that Lake Paranoá retained dissolved inorganic nitrogen (DIN), PO43−-P, total organic phosphorus (TOP) and exported total organic nitrogen (TON), both on a seasonal and annual scale. Surface sediment is the major storage compartment for both N and P. These results show the pressing need for action to reduce the P outcome charges, mainly, from the wastewater treatment plants. The data here presented contributes to the recognition of this situation and to a better comprehension of these nutrient dynamics, as well as an understanding of the behavior of tropical deep-water reservoirs. This can help to promote more effective management, providing a reference for other similar systems.


2012 ◽  
Vol 518-523 ◽  
pp. 1924-1928
Author(s):  
Lei Tong ◽  
Ping Li ◽  
Yi Xian Shao ◽  
Yan Xin Wang

Piggery wastewater includes a lot of hardly degradable pollutants, which are not well removed during treatment plants. In our study, a multi-stage wastewater treatment system was introduced, which contains liquid-solid separation, anaerobic fermentation, aerobic treatment, functional material filtration and oxidation processes. In RPAFR, the readily biodegradable organic matter was degraded, and the removal efficiency of COD and BOD5reached 80%; but nitrogen and phosphorus could not be removed effectively. When MEOD and MFMI were operated to treat digested effluent, nitrogen and phosphorus were effectively removed. The removal of three kinds of antibiotics (FQs, SMs and TCs) in piggery wastewater treatment plants were detected, and for most antibiotics, more than 90% compounds were eliminated, but only few of them were totally removed in wastewater of final effluent. The weather also influenced the removal efficiency of DC, CIP and SMZ, which were better in autumn than spring, however, the whole trend of antibiotics elimination were similar in different weather. Different kinds of antibiotics residues in final effluent enhanced the ecological risk of environmental waters and human health.


2015 ◽  
Vol 4 (2) ◽  
Author(s):  
Isabel Alves-Pereira ◽  
Rita Nunes ◽  
Marta Candeias ◽  
Rui Ferreira

AbstractTriazines and phenylureas, mainly used in agricultural applications for the selective control of germinating grasses and broad-leaved weeds, are often found in contaminated groundwater, surface water and the effluents of wastewater treatment plants. The toxicity of these herbicides in eukaryotic cells is poorly understood.


Author(s):  
Yongkui Yang ◽  
Longfei Wang ◽  
Feng Xiang ◽  
Lin Zhao ◽  
Zhi Qiao

Controlling wastewater pollution from centralized industrial zones is important for reducing overall water pollution. Microbial community structure and diversity can adversely affect wastewater treatment plant (WWTP) performance and stability. Therefore, we studied microbial structure, diversity, and metabolic functions in WWTPs that treat industrial or municipal wastewater. Sludge microbial community diversity and richness were the lowest for the industrial WWTPs, indicating that industrial influents inhibited bacterial growth. The sludge of industrial WWTP had low Nitrospira populations, indicating that influent composition affected nitrification and denitrification. The sludge of industrial WWTPs had high metabolic functions associated with xenobiotic and amino acid metabolism. Furthermore, bacterial richness was positively correlated with conventional pollutants (e.g., carbon, nitrogen, and phosphorus), but negatively correlated with total dissolved solids. This study was expected to provide a more comprehensive understanding of activated sludge microbial communities in full-scale industrial and municipal WWTPs.


Sign in / Sign up

Export Citation Format

Share Document