scholarly journals Partially aerated submerged fixed-film bioreactor for simultaneous removal of carbon and nutrients from high-strength nitrogen wastewaters: effect of aeration rate and C:N:P ratio

2017 ◽  
Vol 76 (4) ◽  
pp. 877-884 ◽  
Author(s):  
Mojtaba Forouzesh ◽  
Ali Baradar Khoshfetrat ◽  
Salman Alizadeh Kordkandi

Influence of aeration rate and COD:N:P (C:N:P) ratio on the performance of an upflow partially aerated submerged fixed film (UP/ASFF) bioreactor for simultaneous carbon and nutrient removal from high-strength nitrogen wastewater was investigated during 6 months. Airflow rates at three levels of 1.5, 3, and 4.5 L/min and C:N:P ratios at four levels of 450:300:10, 450:150:10, 450:100:10, and 450:75:10 were selected as the two main input factors. All experiments were performed at constant chemical oxygen demand (COD), phosphorus (P) and hydraulic residence time of 450 mg COD/L, 10 mg PO43− -P/L and 7.3 h, respectively. The results showed when the airflow rate increased from 1.5 to 4.5 L/min, complete COD removal was achieved. At an airflow rate of 4.5 L/min, total nitrogen removal reached a maximum value of 75% for the C:N:P ratio of 450:75:10. A maximum value of 54% for total phosphorus removal, however, was obtained at an airflow rate of 3 L/min for the C:N:P ratio of 450:75:10. Analysis of variance for the obtained data revealed that aeration rate and nitrogen concentration had more impact on phosphorus removal than COD and nitrogen removal. The study demonstrated that the UP/ASFF system has considerable potential for use in simultaneous removal of carbon and nutrients for high-strength nitrogen wastewater.

2021 ◽  
Author(s):  
Zhihang Yuan ◽  
Da Kang ◽  
Guangyu Li ◽  
Jangho Lee ◽  
IL Han ◽  
...  

AbstractThe enhanced biological phosphorus removal (EBPR) has been widely applied in treating domestic wastewater, while the performance on high-strength P wastewater is less investigated and the feasibility of coupling with short-cut nitrogen removal process remains unknown. This study first achieved the simultaneous high-efficient P removal and stable nitrite accumulation in one sequencing batch reactor for treating the synthetic digested manure wastewater. The average effluent P could be down to 0.8 ± 1.0 mg P/L and the P removal efficiency was 99.5 ± 0.8%. Candidatus Accumulibacter was the dominant polyphosphate accumulating organism (PAO) with the relative abundance of 14.2-33.1% in the reactor. Examination of the micro-diversity of Candidatus Accumulibacter using 16s rRNA gene-based oligotyping analysis revealed one unique Accumulibacter oligotype that different from the conventional system, which accounted for 64.2-87.9% of the total Accumulibacter abundance. The presence of high-abundant glycogen accumulating organisms (GAO) (15.6-40.3%, Defluviicoccus and Candidatus Competibacter) did not deteriorate the EBPR performance. Moreover, nitrite accumulation happened in the system with the effluent nitrite up to 20.4 ± 6.4 mg N/L and the nitrite accumulation ratio was nearly 100% maintained for 140 days (420 cycles). Nitrosomonas was the dominant ammonia-oxidizing bacteria with relative abundance of 0.3-2.4% while nitrite-oxidizing bacteria were almost undetected (<0.1%). The introduction of extended anaerobic phase and high volatile fatty acid concentrations were proposed to be the potential selector forces to promote partial nitrification. This is the first study that combined EBPR with nitrite-accumulation for digested manure wastewater treatment, and it provided new sights in strategies to combine the EBPR and short-cut nitrogen removal via nitrite to achieve simultaneous nitrogen and phosphorus removal.


1990 ◽  
Vol 22 (3-4) ◽  
pp. 211-216
Author(s):  
Niels Skov Olesen

In some areas of Denmark nutrient removal is required even for very small wastewater plants, that is down to 500 pe (pe = person equivalents). The goal for the removal is 80% removal of nitrogen and 90% removal of phosphorus, or in terms of concentrations: 8 mg nitrogen/l and 1.2 mg phosphorus/l. The inlet concentrations are typically 40 mg N/l and 10 mg P/l. The paper presents the results from two such plants with a capacity of 800 pe. Phosphorus removal is made by simultaneous precipitation with ferrous sulphate. Nitrogen removal is carried out using the recirculation method. Both plants were originally rotor aerated oxidation ditches. They have been extended with a denitrification reactor and a recirculation pumping station. At present both plants have been in activity for about 3 years and with satisfactory results. Average concentrations of nitrogen (summer) and phosphorus is 7 mg/l and 0.9 mg/l respectively. Nitrogen removal seems to be a practical solution on these small plants. It is,though, sensitive to temperature and highly oxidized rain water. Phosphorus removal seems to be an easily run and relatively non-sensitive technique at least when using simultaneous precipitation.


2017 ◽  
Vol 41 (2) ◽  
pp. 237-247 ◽  
Author(s):  
Paul Moretti ◽  
Jean-Marc Choubert ◽  
Jean-Pierre Canler ◽  
Pierre Buffière ◽  
Olivier Pétrimaux ◽  
...  

2000 ◽  
Vol 41 (12) ◽  
pp. 101-106 ◽  
Author(s):  
D. Pak ◽  
W. Chang

A two-biofilter system operated under alternate conditions of anaerobic/aerobic was tested to simultaneously remove nitrogen and phosphorus from sewage. The factors affecting simultaneous removal of nitrogen and phosphorus by the two-biofilter system were investigated. Those factors appeared to be influent COD/T-N and COD/T-P ratio, nitrogen loading rate and hydraulic retention time. Nitrite and nitrate produced in the biofilter in aerobic condition affected phosphorus removal by the two-biofilter system. The amount of biomass wasted during the backwash procedure also affected total nitrogen and phosphorus removal by the system.


RSC Advances ◽  
2015 ◽  
Vol 5 (73) ◽  
pp. 59326-59334 ◽  
Author(s):  
A. Chen ◽  
Y. Chen ◽  
C. Ding ◽  
H. Liang ◽  
B. Yang

The presence of 2 and 5 mg L−1of tetracycline decreased total nitrogen removal. Tetracycline induced EPS release and decreased its protective role on cells. Denitrifiers instead of nitrifiers were negatively affected by tetracycline.


2006 ◽  
Vol 53 (12) ◽  
pp. 149-159 ◽  
Author(s):  
L. Gut ◽  
E. Płaza ◽  
J. Trela ◽  
B. Hultman ◽  
J. Bosander

One-year (2004) comprehensive investigations in a semi-industrial pilot plant (5 m3) were carried out with the aim of assessing the influence of operational parameters on the partial nitritation/Anammox system performance. In the system designed as a moving-bed biofilm reactor, the influent nitrogen load to the Anammox reactor was progressively increased and a stable Anammox bacterial culture was obtained. Interaction between subsequent aerobic and anaerobic conditions in the partial nitritation and Anammox reactors, respectively, granted conditions to remove nitrogen through the nitrite route. It implies that the oxygen supply can be limited to a high extent. A control strategy for the partial nitritation step relied on concomitant adjustment of the air supply with a variable influent nitrogen load, which can be monitored by both pH and conductivity measurements. In the Anammox reactor, an influent nitrite-to-ammonium ratio plays a vital role in obtaining efficient nitrogen removal. During the 1-year experimental period, the Anammox reactor was operated steadily and average nitrogen removal efficiency was 84% with 97% as the maximum value.


Sign in / Sign up

Export Citation Format

Share Document