scholarly journals Loading, transport, and treatment of emerging chemical and biological contaminants of concern in stormwater

Author(s):  
Sumaiya Saifur ◽  
Courtney M. Gardner

Abstract Stormwater is a largely uncontrolled source of pollution in rural and urban environments across the United States. Concern regarding the growing diversity and abundance of pollutants in stormwater as well as their impacts on water quality has grown significantly over the past several decades. In addition to conventional contaminants like nutrients and heavy metals, stormwater is a well-documented source of many contaminants of emerging concern, which can be toxic to both aquatic and terrestrial organisms and remain a barrier to maintaining high quality water resources. Chemical pollutants like pharmaceuticals and personal care products, industrial pollutants such as per- and polyfluoroalkyl substances, and tire wear particles in stormwater are of great concern due to their toxic, genotoxic, mutagenic and carcinogenic properties. Emerging microbial contaminants such as pathogens and antibiotic resistance genes also represent significant threats to environmental water quality and human health. Knowledge regarding the transport, behavior, and the remediation capacity of these pollutants in runoff is key for addressing these pollutants in situ and minimizing ecosystem perturbations. To this end, this review paper will analyze current understanding of these contaminants in stormwater runoff in terms of their transport, behavior, and bioremediation potential.

Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 967
Author(s):  
Kaleh Karim ◽  
Sujata Guha ◽  
Ryan Beni

Drinking water quality can be compromised by heavy metals, such as copper and lead. If consumed raw, water can pose a health burden to the general population. In this study, the roles of heavy metals and biological contaminants have been explored in determining the quality of drinking water available to consumers of various socioeconomic backgrounds in the United States. In an effort to gain an understanding of possible social disparities in drinking water, a quantitative analysis was conducted to examine whether vulnerable populations are disproportionately impacted by drinking water contaminants. Our data indicated that states with middle-average household incomes were statistically more susceptible to higher levels of lead in drinking water. The states with higher-average household incomes demonstrated lower copper levels compared to those with lower incomes, although a direct correlation was not present. No statistical significance was observed in the total coliform and turbidity levels in correlation to the average household incomes. In general, more violations in water quality were prevalent in middle-income states when compared to the states with lower-average household incomes.


2019 ◽  
Vol 17 (5) ◽  
pp. 788-800 ◽  
Author(s):  
Kaitlin Mattos ◽  
Elizabeth King ◽  
Cara Lucas ◽  
Elizabeth Hodges Snyder ◽  
Aaron Dotson ◽  
...  

Abstract Rainwater collection is a common source of household water in developed and developing communities where treated on-site water is not available. Although rainwater catchment has been practiced for generations in rural Alaska communities, there are little data available on the quality and quantity of rainwater resources. Forty-eight rainwater samples were collected from nine communities in Alaska over 2 years. Samples were tested for physical water quality parameters, metals, and bacteria. Characteristics of household catchments were recorded. Rainwater quantity in two communities was evaluated. Overall, high-quality water was observed in rain catchments, with average total organic carbon (TOC) and turbidity being lower than or equal to those values in other published rainwater studies. pH was consistently low. Over 80% of samples were below the United States limits for metals and met international microbiological water quality standards. However, variation was observed between households, communities, indoor/outdoor bacteria samples, covered/uncovered storage containers, and over time. The quantity of rainwater available for catchment could supply 17–40% of annual household water and is projected to increase in future decades according to Alaska climate models. Best practices are recommended for rural Alaska communities to maintain the naturally high quality of rainwater and take advantage of large quantities of rainwater available on-site.


2018 ◽  
Vol 6 (1) ◽  
Author(s):  
Arie Herlambang

In the event of natural disasters such as earthquakes, tsunamis, landslides, floods and droughts, water occupies a key role in disaster relief. The presence of water is important for drinking, cooking and support the refugee areas of environmental sanitation and avoiding disaster victims of diseases waterborn disease. Water problem in disaster conditions may occur partly as a result: the disturbance of water sources because change of water quality, to become turbid or salty, the destruction of a piping system, treatment plant damage, disruption of distribution systems, or the scarcity of water in evacuation areas. Introduction of water quality becomes important to determine which process technology will be used and saved investments in emergency conditions. Priority handling of clean water usually comes first in the refugee areas with communal system, because the need of water for bathing, washing and toilet is big enough, while for a drink in the early events during disaster dominated by bottled water, but for their long-term, they have to boil water. For remote areas and difficult to reach individuals who usually use  system more simple and easily operated. Water Supply Technology for emergency response has the characteristic 1). Able to operate with all sorts of water conditions (flexible adaptable), 2). Can be operated easily, 3). Does not require much maintenance, 4). Little use of chemicals, and 5). Portable and easy removable (Mobile System). Keywords :  Water Quality, Water Treatment Technology, Drinking Water, Emergency Response, filtration, ceramic filtration, Ultra filtration, Reverse Osmosis, Ultraviolet Sterilizer, Ozonizer, Disinfection.


Author(s):  
Bruce D. Lindsey ◽  
Marian P. Berndt ◽  
Brian G. Katz ◽  
Ann F. Ardis ◽  
Kenneth A. Skach

1988 ◽  
Vol 20 (10) ◽  
pp. 101-108 ◽  
Author(s):  
Nelson A. Thomas

A biomonitoring program has been developed in support of the National Policy for the Development of Water Quality-Based Permit Limitations for Toxic Pollutants. The program focuses on the use of laboratory toxicity tests on aquatic plants and animals to predict ecosystem impact caused by toxic pollutants. Both acute and chronic toxicity tests were developed to test effluents and ambient waters. Laboratory and biological field studies were conducted at nine sites. Single species laboratory toxicity tests were found to be good predictors of impacts on the ecosystem when two or more species were used. Biomonitoring can be undertaken either on effluents and/or on the receiving waters. In that toxicity related to seeps, leachates and storm sewers has often been found upstream from dischargers, it is beneficial to conduct both effluent and ambient biomonitoring.


1987 ◽  
Vol 19 (9) ◽  
pp. 19-29 ◽  
Author(s):  
Edwin E. Herricks ◽  
Maria I. Braga

Comprehensive river basin management mast move beyond narrowly focused programs dealing with water quantity or water quality. A more comprehensive approach to river basin management recognizes that both flow quantity and water quality can be summarized as habitat measures. A number of well developed physical habitat analysis and prediction procedures are presently available. Several computerized systems available from the U.S.Fish and Wildlife Service (Habitat Suitability Index - HSI and PHysical HABitat SIMulation - PHABSIM) provide macrohabitat definition. We have developed a water quality based habitat component which operates effectively for general analysis. With an emphasis on site specific management in the United States, the macrohabitat definition procedures may not meet all river basin management and planning requirements. This paper reviews the results of research which characterizes microhabitat in streams and rivers and provides a valuable extension to basin management procedures.


1993 ◽  
Vol 28 (3-5) ◽  
pp. 65-68
Author(s):  
Michelle Miller

The following case study addresses the difficulties and promise of developing a statewide interagency public information campaign to raise general awareness of water quality issues and governmental programs to address them. Due to only moderate success of voluntary programs to curb nonpoint source pollution, agencies are looking toward information and education programs to motivate the public toward conservation behavior. One of the biggest obstacles in developing an effective information/education program is institutional barriers to interagency cooperation, mirroring difficulties local conservationists encounter in their work to restore and maintain water quality at the watershed level. Cooperation between federal agencies, and resource commitment to public information is necessary at the federal level, as well as state and local levels. Agencies involved to date include the United States Department of Agriculture-Soil Conservation Service; Wisconsin State Departments of Natural Resources, and Agriculture, Trade and Consumer Protection and Administration; University of Wisconsin-Extension; Wisconsin Land Conservation Association.


1999 ◽  
Vol 39 (4) ◽  
pp. 185-192 ◽  
Author(s):  
A. M. J. Ragas ◽  
R. S. E. W. Leuven

Water authorities apply a diversity of models and input data to set water quality-based emission limits in discharge permits. To illustrate the consequences of model and data selection, two complete mixing models and four mixing zone models used in Germany, the United Kingdom (UK), the Netherlands and the United States of America (USA) were selected and applied to various discharges of cadmium. The maximum allowable annual cadmium load was calculated for each model and diverging input data for upstream flow, upstream concentration, effluent flow and effluent concentration. Due to model selection, differences in pollutant loads amounted to a factor 3. Harmonisation of the derivation of water quality-based emission limits is necessary to prevent widely divergent pollutant loads under comparable environmental conditions.


Sign in / Sign up

Export Citation Format

Share Document