scholarly journals Mechanistic insights into the adsorption of methylene blue by particulate durian peel waste in water

Author(s):  
Hanggara Sudrajat ◽  
Ari Susanti ◽  
Ditta Kharisma Yolanda Putri ◽  
Sri Hartuti

Abstract This study aims to investigate the adsorption of methylene blue (MB) over particulate durian peel waste, which is chemically-activated with hydrogen peroxide. The equilibrium data is well-described by the Freundlich isotherm model, which outlines where the MB adsorption takes place predominantly on multilayers and heterogeneous surfaces of the biosorbent. The Freundlich adsorption constants, KF and n, are 11.06 L/g and 2.94, respectively. Thermodynamic data suggests that the MB adsorption occurs spontaneously and exothermically. The enthalpy and entropy for the MB adsorption are obtained as 10.26 kJ/mol and 0.058 kJ/mol K, respectively, in the temperature range of 303–323 K. Based on the stepwise desorption method, the adsorption of MB is dominated by physical interactions, particularly hydrogen bonding.

2018 ◽  
Vol 54 (1) ◽  
pp. 57-69 ◽  
Author(s):  
Shaheriar Haque ◽  
Sekhar Gain ◽  
Kaushik Gupta ◽  
Uday Chand Ghosh

Abstract Graphene oxide (GO) fabricated iron-aluminium oxide (GO@IAO) nanocomposite was synthesized with one-spot chemical reaction from emulsification of GO (1.0 g) in 0.2 L of 1.0 M mixed metal solution, which was characterized with some of the latest analytical tools aiming to assess methylene blue (MB) adsorption performance from aqueous solutions. Adsorption of MB on GO@IAO surfaces shows a steep increase from pH 3.0 to 5.0, but steepness declines at pH >5.0. The closeness of fitted kinetic data with the pseudo-second order (PSO) equation (R2 = 0.9845) compared to the pseudo-first order equation (R2 = 0.9527) confirms the adsorption process is of the PSO type. The MB adsorption equilibrium data can be described better by the Langmuir isotherm (R2 = 0.99) than the Freundlich isotherm (R2 = 0.96–0.97), inclining to the monolayer adsorption process. The Langmuir adsorption capacity of GO@IAO has been estimated to be 330.35 mg/g at 303 K. The MB adsorption is established to be spontaneous (–ΔG0 = 26.31–26.61 kJ/mol) owing to favourable enthalpy and entropy changes (ΔH0 = –23.38 kJ/mol; ΔS0= 0.01 kJ/mol/K). Both absolute and aqueous (1/1, v/v) alcohols regenerate the MB adsorbed GO@IAO up to 80–85%, indicating recyclability of composite.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1279
Author(s):  
Wafa Mohammed Alghamdi ◽  
Ines El Mannoubi

Natural adsorbents as low-cost materials have been proved efficient for water remediation and have significant capacity for the removal of certain chemicals from wastewater. The present investigation aimed to use Citrullus colocynthis seeds (CCSs) and peels (CCPs) as an efficient natural adsorbent for methylene blue (MB) dye in an aqueous solution. The examined biosorbents were characterized using surface area analyzer (BET), scanning electron microscope (SEM), thermogravimetric analyzer (TGA) and Fourier transform infra-red (FT-IR) spectroscopy. Batch adsorption experiments were conducted to optimize the main factors influencing the biosorption process. The equilibrium data for the adsorption of MB by CCSs were best described by the Langmuir isotherm followed by the Freundlich adsorption isotherms, while the equilibrium data for MB adsorption by CCPs were well fitted by the Langmuir isotherm followed by the Temkin isotherm. Under optimum conditions, the maximum biosorption capacity and removal efficiency were 18.832 mg g−1 and 98.00% for MB-CCSs and 4.480 mg g−1 and 91.43% for MB-CCPs. Kinetic studies revealed that MB adsorption onto CCSs obeys pseudo-first order kinetic model (K1 = 0.0274 min−1), while MB adsorption onto CCPs follows the pseudo-second order kinetic model (K2 = 0.0177 g mg−1 min−1). Thermodynamic studies revealed that the MB biosorption by CCSs was endothermic and a spontaneous process in nature associated with a rise in randomness, but the MB adsorption by CCPs was exothermic and a spontaneous process only at room temperature with a decline in disorder. Based on the obtained results, CCSs and CCPSs can be utilized as efficient, natural biosorbents, and CCSs is promising since it showed the highest removal percentage and adsorption capacity of MB dye.


2013 ◽  
Vol 726-731 ◽  
pp. 2380-2383
Author(s):  
Li Xia Li ◽  
Xin Dong Zhai

Modified bentonite was used as adsorbent for the methylene blue adsorption in a batch process. Experimental results show that the adsorption kinetics is well described by pseudo-second-order model and the equilibrium data was better represented by the Freundlich isotherm model. The results revealed that the modified bentonite has the potential to be used as a good adsorbent for the removal of methylene blue from aqueous solutions.


2016 ◽  
Vol 9 (2) ◽  
pp. 102-108
Author(s):  
Yash Mishra ◽  
V. Sowmya ◽  
S. Shanthakumar

In this study, the adsorption potential of Teak (Tectona grandis) leaf powder (TLP) to remove Methylene blue (MB) and Malachite Green (MG) dye molecules from aqueous solution was investigated. Batch experiments were conducted to evaluate the influence of operational parameters such as, pH (2-9), adsorbent dosage (1-7 g/L), contact time (15-150 minutes) and initial dye concentration (20-120 mg/L) at stirring speed of 150 rpm, on the adsorption of MB and MG on TLP. The maximum removal efficiency of 98.4% and 95.1% was achieved for MB and MG dye, respectively. The experimental equilibrium data were analyzed using Langmuir, Freundlich and Temkin isotherms and it was found that it fitted well to the Freundlich Isotherm model. The surface structure and morphology of the adsorbent was characterized using Scanning electron microscopy (SEM) and the presence of functional groups and its interaction with the dye molecules were analyzed using Fourier transform infrared (FTIR). Based on the investigation, it has been demonstrated that the teak leaf powder has good potential for effective adsorption of Methylene blue and Malachite green dye.


2020 ◽  
Vol 10 (1) ◽  
pp. 22-32
Author(s):  
Abdoulaye Demba N'diaye ◽  
Youcef Aoulad El Hadj Ali ◽  
Mohamed Abdallahi Bollahi ◽  
Mostafa Stitou ◽  
Mohamed Kankou ◽  
...  

In this work, batch adsorption experiments were carried out for the removal of Methylene Blue (MB) from aqueous solutions using Typha australis leaf as a low cost adsorbent. The effects of some variables governing the efficiency of the process such as adsorbent mass, pH, ionic strength, contact time and temperature were investigated. The adsorption kinetic data were analyzed using the Pseudo First Order (PFO) and Pseudo Second Order (PSO) models. The experimental equilibrium data were analyzed using Langmuir and Freundlich isotherm models. The results show that the PSO model is the best for describing the adsorption of MB by Typha australis for all initial MB concentrations. The equilibrium data fitted well with the Langmuir model with the monolayer adsorption capacity for MB-Typha australis leaf system was of 103.12 mg g-1. The values of activation parameters such as free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were also determined as - 4.44 kJ mol−1, 55.13 kJ mol−1 and 203.21 J mol−1 K−1, respectively. The thermodynamics parameters of MB-Typha australis system indicate spontaneous and endothermic process. These results indicate that the Typha australis leaf can be feasibly employed for the eradication of MB from aqueous solution.


2018 ◽  
Vol 78 (3) ◽  
pp. 556-570 ◽  
Author(s):  
Lih-Fu Chen ◽  
Hsiou-Hsuan Wang ◽  
Kao-Yung Lin ◽  
Jui-Yen Kuo ◽  
Ming-Kuang Wang ◽  
...  

Abstract Drainage canal sediments in an industrial park are generally dredged to landfill in Taiwan. The objective of this study was to evaluate feasibility employing the sediment as an adsorbent for removal of dye. The sediment contained approximately 10% of organic matter and little heavy metals. Infrared (IR) analysis revealed that carboxyl was the most important functional group for methylene blue (MB) sorption. Canal sediment could remove the most MB from water at pH 8.0 and this removal increased with increasing temperature. The MB sorption was well described by the Langmuir, Dubinin–Radushkevich, and Temkin sorption isotherms at 10°C, but it showed good compliance with Freundlich isotherm at 25°C and 40°C. The MB adsorption was a spontaneous and endothermic reaction; its maximum calculated adsorption capacity (Qm) was 56.0 mg g−1 at 10°C by the Langmuir isotherm. The calculated values of enthalpy (ΔH°) and entropy (ΔS°) are 14.6 kJ mol−1 and 149.2 kJ mol−1, respectively. Only pseudo-second-order adsorption kinetic model successfully described the kinetics of MB onto the sediment at different operation parameters. Activation energy of MB adsorption calculated from Arrhenius equation was 16.434 kJ mol−1, indicating the binding between canal sediment and MB was a physical adsorption.


2018 ◽  
Vol 34 (1) ◽  
pp. 45
Author(s):  
Denise Alves Fungaro ◽  
Juliana De Carvalho Izidoro ◽  
Mariza Bruno

Coal fly ashes treated by hydrothermal method were used as low-cost adsorbent for the removal of metals ions and dye from aqueous solution. The adsorption isotherms of the treated fly ashes were studied and results were fitted using Langmuir and Freundlich models. It shows that the Freundlich isotherm is better in describing the adsorption process for methylene blue. The equilibrium data for zinc and cadmium ions adsorption well fitted to the Langmuir equation. The maximum adsorption capacity value obtained was 0.78 (mg g-1)(L mg)1/n for methylene blue, 38.05 mg g-1 for Zn2+ and 67.48 mg g-1 for Cd2+. The synthesized materials exhibit much higher adsorption capacities than raw fly ashes. The study showed that the zeolitic material can effectively adsorb methylene blue and metals ions with removal efficiencies ranging from 82-99%.


2016 ◽  
Vol 9 (2) ◽  
pp. 102-108 ◽  
Author(s):  
Yash Mishra ◽  
V. Sowmya ◽  
S. Shanthakumar

In this study, the adsorption potential of Teak (Tectona grandis) leaf powder (TLP) to remove Methylene blue (MB) and Malachite Green (MG) dye molecules from aqueous solution was investigated. Batch experiments were conducted to evaluate the influence of operational parameters such as, pH (2-9), adsorbent dosage (1-7 g/L), contact time (15-150 minutes) and initial dye concentration (20-120 mg/L) at stirring speed of 150 rpm, on the adsorption of MB and MG on TLP. The maximum removal efficiency of 98.4% and 95.1% was achieved for MB and MG dye, respectively. The experimental equilibrium data were analyzed using Langmuir, Freundlich and Temkin isotherms and it was found that it fitted well to the Freundlich Isotherm model. The surface structure and morphology of the adsorbent was characterized using Scanning electron microscopy (SEM) and the presence of functional groups and its interaction with the dye molecules were analyzed using Fourier transform infrared (FTIR). Based on the investigation, it has been demonstrated that the teak leaf powder has good potential for effective adsorption of Methylene blue and Malachite green dye.


2015 ◽  
Vol 9 (2) ◽  
pp. 75-92 ◽  
Author(s):  
Maryam Tavakol ◽  
Parviz Aberoomand Azar ◽  
Mohammad Saber Tehrani ◽  
Mehrorang Ghaedi

In this study silver  nanoparticles by hydroxyl group (AgOH-NP) were synthesized and loaded on activated carbon prepared from Rosa canina tree (AgOH-NP-AC-RC). This new adsorbent was used for the removal of Malachite green and Methylene blue from aqueous medium.The morphological properties of the novel adsorbent were investigated by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and FT-IR analysis. The removal both dyes in batch mode was investigated at various operating parameters like; contact time, initial pH, initial dye concentration and amount of adsorbents. The experimental equilibrium data were analyzed by using various models and it was seen that Freundlich isotherm model fitted well with adsorbtion capacity of 105 mg.g-1for Malachite green and 81.43 mg.g-1 for Methylene blue. The adsorption kinetic data followed pseudo second-order kinetics for removal both dyes.DOI: http://dx.doi.org/10.3126/ijls.v9i2.12053 International Journal of Life Sciences 9 (2) : 2015; 75-92


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
V. Gunasekar ◽  
V. Ponnusami

Carbon synthesized from plant leaf powder was employed for the adsorption of methylene blue from aqueous effluent. Effects of pH (2, 4, 6, 8, and 9), dye concentration (50, 100, 150, and 200 mg/dm3), adsorbent dosage (0.5, 1.0, 1.5, and 2.0 g/dm3), and temperature (303, 313, and 323 K) were studied. The process followed pseudo-second-order kinetics. Equilibrium data was examined with Langmuir and Freundlich isotherm models and Langmuir model was found to be the best fitting model with highR2and low chi2values. Langmuir monolayer adsorption capacity of the adsorbent was found to be 61.22 mg/g. From the thermodynamic analysis, ΔH, ΔG, and ΔSvalues for the adsorption of MB onto the plant leaf carbon were found out. From the values of free energy change, the process was found out to be feasible process. From the magnitude of ΔH, the process was found to be endothermic physisorption.


Sign in / Sign up

Export Citation Format

Share Document