scholarly journals Kinetics, Equilibrium, and Thermodynamic Studies on Adsorption of Methylene Blue by Carbonized Plant Leaf Powder

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
V. Gunasekar ◽  
V. Ponnusami

Carbon synthesized from plant leaf powder was employed for the adsorption of methylene blue from aqueous effluent. Effects of pH (2, 4, 6, 8, and 9), dye concentration (50, 100, 150, and 200 mg/dm3), adsorbent dosage (0.5, 1.0, 1.5, and 2.0 g/dm3), and temperature (303, 313, and 323 K) were studied. The process followed pseudo-second-order kinetics. Equilibrium data was examined with Langmuir and Freundlich isotherm models and Langmuir model was found to be the best fitting model with highR2and low chi2values. Langmuir monolayer adsorption capacity of the adsorbent was found to be 61.22 mg/g. From the thermodynamic analysis, ΔH, ΔG, and ΔSvalues for the adsorption of MB onto the plant leaf carbon were found out. From the values of free energy change, the process was found out to be feasible process. From the magnitude of ΔH, the process was found to be endothermic physisorption.

2011 ◽  
Vol 64 (3) ◽  
pp. 654-660 ◽  
Author(s):  
Xiuli Han ◽  
Wei Wang ◽  
Xiaojian Ma

The adsorption potential of lotus leaf to remove methylene blue (MB) from aqueous solution was investigated in batch and fixed-bed column experiments. Langmuir, Freundlich, Temkin and Koble–Corrigan isotherm models were employed to discuss the adsorption behavior. The results of analysis indicated that the equilibrium data were perfectly represented by Temkin isotherm and the Langmuir saturation adsorption capacity of lotus leaf was found to be 239.6 mg g−1 at 303 K. In fixed-bed column experiments, the effects of flow rate, influent concentration and bed height on the breakthrough characteristics of adsorption were discussed. The Thomas and the bed-depth/service time (BDST) models were applied to the column experimental data to determine the characteristic parameters of the column adsorption. The two models were found to be suitable to describe the dynamic behavior of MB adsorbed onto the lotus leaf powder column.


2013 ◽  
Vol 726-731 ◽  
pp. 2380-2383
Author(s):  
Li Xia Li ◽  
Xin Dong Zhai

Modified bentonite was used as adsorbent for the methylene blue adsorption in a batch process. Experimental results show that the adsorption kinetics is well described by pseudo-second-order model and the equilibrium data was better represented by the Freundlich isotherm model. The results revealed that the modified bentonite has the potential to be used as a good adsorbent for the removal of methylene blue from aqueous solutions.


2008 ◽  
Vol 5 (4) ◽  
pp. 742-753 ◽  
Author(s):  
M. Sujatha ◽  
A. Geetha ◽  
P. Sivakumar ◽  
P. N. Palanisamy

An Experimental and theoretical study has been conducted on the adsorption of methylene blue dye using activated carbon prepared from babul seed by chemical activation with orthophosphoric acid. BET surface area of the activated carbon was determined as 1060 m2/g. Adsorption kinetics, equilibrium and thermodynamics were investigated as a function of initial dye concentration, temperature and pH. First order Lagergren, pseudo-second order and Elovich kinetic models were used to test the adsorption kinetics. Results were analyzed by the Langmuir, Freundlich and Temkin isotherm models. Based on regression coefficient, the equilibrium data found fitted well to the Langmuir equilibrium model than other models. The characteristics of the prepared activated carbon were found comparable to the commercial activated carbon. It is found that the babul seed activated carbon is very effective for the removal of colouring matter.


2012 ◽  
Vol 27 ◽  
pp. 107-114
Author(s):  
Jagjit Kour ◽  
P. L. Homagai ◽  
M. R. Pokherel ◽  
K. N. Ghimire

The industrial discharge of heavy metals into waters' course is one of the major pollution problems affecting water quality. Therefore, they must be removed prior to their discharge into waste streams. An efficient and low-cost bioadsorbent has been investigated from Desmostachya bipinnata (Kush) by charring with concentrated sulphuric acid and functionalized with dimethylamine.It was characterised by SEM, FTIR and elemental analysis. The effect of pH, initial concentration and contact time of the metal solution was monitered by batch method. The maximum adsorption capacities were determined for Cd and Zn at their optimum pH 6. The equilibrium data were analysed using Langmuir and Freundlich isotherm models. Langmuir isotherm model fitted well and the rate of adsorption followed the pseudo second order kinetic equation.DOI: http://dx.doi.org/10.3126/jncs.v27i1.6669 J. Nepal Chem. Soc., Vol. 27, 2011 107-114  


2016 ◽  
Vol 9 (2) ◽  
pp. 102-108
Author(s):  
Yash Mishra ◽  
V. Sowmya ◽  
S. Shanthakumar

In this study, the adsorption potential of Teak (Tectona grandis) leaf powder (TLP) to remove Methylene blue (MB) and Malachite Green (MG) dye molecules from aqueous solution was investigated. Batch experiments were conducted to evaluate the influence of operational parameters such as, pH (2-9), adsorbent dosage (1-7 g/L), contact time (15-150 minutes) and initial dye concentration (20-120 mg/L) at stirring speed of 150 rpm, on the adsorption of MB and MG on TLP. The maximum removal efficiency of 98.4% and 95.1% was achieved for MB and MG dye, respectively. The experimental equilibrium data were analyzed using Langmuir, Freundlich and Temkin isotherms and it was found that it fitted well to the Freundlich Isotherm model. The surface structure and morphology of the adsorbent was characterized using Scanning electron microscopy (SEM) and the presence of functional groups and its interaction with the dye molecules were analyzed using Fourier transform infrared (FTIR). Based on the investigation, it has been demonstrated that the teak leaf powder has good potential for effective adsorption of Methylene blue and Malachite green dye.


2010 ◽  
Vol 7 (3) ◽  
pp. 967-974 ◽  
Author(s):  
N. Muthulakshmi Andal ◽  
V. Sakthi

Biosorption equilibrium and kinetics of Pb(II) and Hg(II) on coconut shell carbon (CSC) were investigated by batch equilibration method. The effects of pH, adsorbent dosage, contact time, temperature and initial concentration of Pb(II) and Hg(II) on the activated carbon of coconut shell wastes were studied. Maximum adsorption of Pb(II) occurred at pH 4.5 and Hg(II) at pH 6. The sorptive mechanism followed the pseudo second order kinetics. The equilibrium data were analysed by Langmuir, Freundlich and Dubinin-Radushkevich isotherm models. The equilibration data fitted well with both Langmuir and Freundlich isotherm model. The Langmuir adsorption capacity for Pb(II) was greater than Hg(II). The mean free energy of adsorption calculated from Dubinin-Radushkevich (D-R) isotherm model indicated that the adsorption of metal ions was found to be by chemical ion exchange. Thermodynamic parameter showed that the sorption process of Pb(II) onto SDC was feasible, spontaneous and endothermic under studied conditions. A comparison was evaluated for the two metals.


2017 ◽  
Vol 19 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Sławomir Wierzba

Abstract This study examined the biosorption process of Ni(II) and Zn(II) from an aqueous solution by dead biomass of Yarrowia lipolytica. Optimum biosorption conditions were determined as a function of pH, biomass dosage, contact time, and temperature. The biosorbent was characterized by FTIR, which indicated the participation of hydroxyl, carboxyl, amide and amine groups in the process of binding the metal ions. The results showed that the biosorption processes of both metal ions closely followed pseudo-second order kinetics. The equilibrium data of Ni(II) and Zn(II) ions at 20, 30 and 40°C fitted the Langmuir and Freundlich isotherm models. Langmuir isotherm provided a better fit to the equilibrium data, with a maximum biosorption capacity of the Y. lipolytica biomass for Ni(II) and Zn(II) of 30.12 and 44.44 mg/g respectively. The calculated thermodynamic parameters demonstrated that the biosorption of Ni(II) and Zn(II) ions onto the Y. lipolytica was feasible, spontaneous and endothermic.


2021 ◽  
Vol 9 (11) ◽  
pp. 62-72
Author(s):  
Akissi Lydie Chantal Koffi ◽  
◽  
Djamatche Paul Valery Akesse ◽  
Herman Yapi Yapo ◽  
David Leonce Kouadio ◽  
...  

The aim of this research is to investigate the feasibility of using activated carbon from cocoa pod shells, waste from agriculture to adsorb methylene blue from aqueous solutions through batch tests. Various physiochemical parameters such as, contact time, initial dye concentration, adsorbent dosage, pH of dye solution and temperature were investigated in a batch-adsorption technique. The process followed the pseudo-second order kinetics model which showed chemical adsorption. Langmuir and Freundlich isotherm models were used to determine adsorption constants. The maximum adsorption capacity at 30°C is 526.31 mg/g. Thermodynamic parameters such as enthalpy change (∆Hº), free energy change (∆Gº) and entropy change (∆Sº) were studied, and the adsorption process of BM was found to be exothermic and spontaneous.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Hizkeal Tsade Kara ◽  
Sisay Tadesse Anshebo ◽  
Fedlu Kedir Sabir ◽  
Getachew Adam Workineh

The study was focused on the preparation and characterizations of sodium periodate-modified nanocellulose (NaIO4-NC) prepared from Eichhornia crassipes for the removal of cationic methylene blue (MB) dye from wastewater (WW). A chemical method was used for the preparation of NaIO4-NC. The prepared NaIO4-NC adsorbent was characterized by using X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscope (SEM), energy-dispersive X-ray (EDX), and Brunauer–Emmett–Teller (BET) instruments. Next, it was tested to the adsorption of MB dye from WW using batch experiments. The adsorption process was performed using Langmuir and Freundlich isotherm models with maximum adsorption efficiency (qmax) of 90.91 mg·g−1 and percent color removal of 78.1% at optimum 30 mg·L−1, 60 min., 1 g, and 8 values of initial concentration, contact time, adsorbent dose, and solution pH, respectively. Pseudo-second-order (PSO) kinetic model was well fitted for the adsorption of MB dye through the chemisorption process. The adsorption process was spontaneous and feasible from the thermodynamic study because the Gibbs free energy value was negative. After adsorption, the decreased values for physicochemical parameters of WW were observed in addition to the color removal. From the regeneration study, it is possible to conclude that NaIO4-NC adsorbent was recyclable and reused as MB dye adsorption for 13 successive cycles without significant efficient loss.


2021 ◽  
Vol 2063 (1) ◽  
pp. 012011
Author(s):  
Huda S Al-Niaeem ◽  
Ali A Abdulwahid ◽  
Whidad S Hanoosh

Abstract Hydrogels of acrylamide (AM), acrylamide\ 2-acrylamido-2-methyl-1-propane sulphonic acid (AMS), and acrylamide\ 2-acrylamido-2-methyl-1-propane sulphonic acid\graphene oxide (AMSGO) were prepared as adsorbents to remove carcinogenic dyes Congo red (CR) and Bismarck brown Y (BBY) from aqueous solutions. Hydrogels were characterized using FSEM and XRD analyses. For both dyes, the synthesized hydrogels demonstrated high adsorption capability at near-neutral pH. Experimental adsorption data were analyzed using the Langmuir and Freundlich isotherm models. It was found that the Langmuir model was more suitable for the experimental data. Kinetic studies found that the pseudo-second-order model demonstrated the best fitting to the experimental data. In addition, thermodynamic studies suggest that the adsorption process was spontaneous and endothermic. The prepared hydrogels were regenerated and reused in four consecutive cycles and it could be applied to remove anionic dyes from aqueous solutions as an effective adsorbent.


Sign in / Sign up

Export Citation Format

Share Document