scholarly journals An investigation into the role of treatment performance and soil characteristics of soil-based wastewater treatment systems

Author(s):  
N. Baykuş ◽  
M. Karpuzcu

Abstract Soil-based onsite wastewater treatment systems (OWTS) are becoming more important for the treatment and disposal of wastewater in areas that have not central wastewater collection and treatment systems. However, there are concerns that OWTS may have adverse effects on public health and environment. The purpose of this study is to treat wastewater with using natural soil column in order to evaluate treatment system performance. Wastewater was applied to two different natural soils at different flow rates of 9, 18 and 36 L/day. The treatment performances of wastewater and geotechnical properties of the natural soils were examined. As a result of this study, the percentage of COD and SS removal in wastewater after soil column filtration were range from 36.2% to 80.5% and 84.4% to 97.9% respectively. pH values of wastewater after the filtration were measured between 7.75 and 8.12. TP and TN removal rates were found in the range of 23.9–76.8% and 12.4–83.0%, respectively. The column effluent water were classified as both ‘high hardness class’ in terms of hardness and ‘polluted water’ in terms of conductivity. Column effluent water were found in ‘low, medium, and high hazard’ classes in terms of SAR. Whereas the PL values of the natural soils were found to increase by up to 4.8% in filtration area, specific gravity decrease nearly 1.1%. The values of LL, PI, maximum dry density, optimum water content, and permeability were changed depending on the soil type. The UCS of the natural soils after wastewater filtration decreased by about 5.9%. It was concluded that natural soils have positive effects on treatment of wastewater in short time.

2019 ◽  
Vol 59 (2) ◽  
pp. 532-543 ◽  
Author(s):  
M.S. Asadi ◽  
R.P. Orense ◽  
M.B. Asadi ◽  
M.J. Pender

2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Anigilaje B Salahudeen ◽  
Ja’afar A Sadeeq

The study investigate the suitability of subgrade soil in Baure Local Government Area of Kastina State Nigeria for road construction. The strength properties of the  subgrade was improved using lime and cement. Several analysis including the particle size distribution, specific gravity, Atterberg limits, compaction characteristics, unconfined compressive strength and California bearing ratio tests were performed on natural and lime/cement treated soil samples in accordance with BS 1377 (1990) and BS 1924 (1990) respectively. Soil specimens were prepared by mixing the soil with lime and cement in steps of 0, 3, 6, and 9% by weight of dry soil in several percentage combinations. The Atterberg limits of the weak subgrade soils improved having a minimum plasticity index value of 5.70 % at 3%Lime/6%Cement contents. The maximum dry density (MDD) values obtained showed a significant improvement having a peak value of 1.66 kN/m3 at 9%Lime/9%Cement contents. Similarly, a minimum value of 18.50 % was observed for optimum moisture content at 9%Lime/9%Cement contents which is a desirable reduction from a value of 25.00 % for the natural soil. The unconfined compressive test value increased from 167.30 kN/m2 for the natural soil to 446.77 kN/m2 at 9%Lime/9%Cement contents 28 days curing period. Likewise, the soaked California bearing ratio values increased from 2.90 % for the natural soil to 83.90 % at 9%Lime/9%Cement contents. Generally, there were improvements in the engineering properties of the weak subgrade soil when treated with lime and cement. However, the peak UCS value of 446.77 kN/m2 fails to meet the recommended UCS value of 1710 KN/m2 specified by TRRL (1977) as a criterion for adequate stabilization using Ordinary Portland Cement.            Keywords: Weak subgrade soil, Lime, Cement, Atterberg limits, Maximum dry density, Optimum moisture content, Unconfined compressive strength, California bearing ratio


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Lei Gao ◽  
Guohui Hu ◽  
Nan Xu ◽  
Junyi Fu ◽  
Chao Xiang ◽  
...  

In order to study the mechanism and effect of basalt fiber reinforced clay soil, a series of unconfined compressive strength tests conducted on clay soil reinforced with basalt fiber have been performed under the condition of optimum water content and maximum dry density. Both the content and length of basalt fiber are considered in this paper. When the effect of content is studied, the 12 mm long fibers are dispersed into clay soil at different contents of 0.05%, 0.1%, 0.15%, 0.20%, 0.25%, 0.30%, and 0.35%. When the effect of length is researched, different lengths of basalt fibers with 4 mm, 8 mm, 12 mm, and 15 mm are put into soil at the same content of 0.05%. Experimental results show that basalt fiber can effectively improve the UCS of clay soil. And the best content and length are 0.25% and 12 mm, respectively. The results also show that the basalt fiber reinforced clay soil has the “poststrong” characteristic. About the reinforcement mechanism, the fiber and soil column-net model is proposed in this paper. Based on this model and SEM images, the effect of fiber content and length is related to the change of fiber-soil column and formation of effective fiber-soil net.


2021 ◽  
Vol 24 (2) ◽  
pp. 123-129
Author(s):  
Kamal Ahmed Rashed ◽  
Nihad Bahaaldeen Salih ◽  
Tavga Aram Abdalla

Soil’s characteristics are essential for the successful design of projects such as airports runway and flexible pavement. CBR (California Bering Ratio) is one of the significant soil characteristics for highways and airports projects. Thus, the CBR property can be used to determine the subgrade reaction of soil through correlations. Many of the soil geotechnical parameters such as compaction characteristics (Maximum Dry Density, MDD; Optimum Moisture Content, OMC), and consistency parameters (Liquid Limit, LL; Plastic Limit, PL; Plasticity Index, PI) can be in charge of changes that happen in soil CBR value. Soaked and/or non-soaked conditions of soils also affect CBR value. Hence, testing soils in a laboratory for CBR calculation is time-consuming that needs notable effort. Therefore, this study aims to generate some useful correlations for soil’s CBR with compaction and consistency parameters for 85 samples of fine-grained soils. The study trials were applied on natural soil samples of various places in Sulaimani Governorate, Northern Iraq. Statistical analysis has been carried out by using SPSS software (Version 28). Soaked CBR is counted, which is important for conditions such as rural roads that remain prone to water for few days. Based on the statistical analysis, there is a significant correlation between LL, PL, PI, MDD, and OMC with CBR as the dependent variable as a single variable equation with R2 of  0.7673, 0.5423, 0.5192, 0.6489, and 0.51, respectively. In addition, the highest value of R2 correlation was obtained between CBR value with consistency and compaction properties as a multiple regression equation with R2 of 0.82. The obtained equations for correlation purposes are successfully achieved and can be used, notably, to estimate CBR value.


2016 ◽  
Vol 2 (11) ◽  
pp. 568-575 ◽  
Author(s):  
Emeka Segun Nnochiri ◽  
Olumide Moses Ogundipe

This study assesses the geotechnical properties of lateritic soil stabilized with Ground-nut Husk Ash. Preliminary tests were carried out on the natural soil sample for identification and classification purposes, while consistency limits tests were thereafter carried out as well. Engineering property tests such as California Bearing Ratio (CBR), Unconfined Compressive Strength (UCS) and compaction tests were performed on both the natural soil sample and the stabilized lateritic soil, which was stabilized by adding Ground-nut Husk Ash, GHA, in percentages of 2, 4, 6, 8 and 10 by weight of the soil.  The results showed that the addition of GHA enhanced the strength of the soil sample. The Maximum Dry Density (MDD) reduced from 1960 kg/m3 to 1760 kg/m3 at 10% GHA by weight of soil. The Optimum Moisture Content (OMC) increased from 12.70% to 14.95%, also at 10% GHA by weight of soil. The unsoaked CBR values increased from 24.42% to 72.88% finally, the UCS values increased from 510.25 kN/m2 to 1186.46 kN/m2, for both CBR and UCS, the values were at 10% GHA by weight of soil. It was therefore concluded that GHA performs satisfactorily as a cheap stabilizing agent for stabilizing lateritic soil especially for subgrade and sub base purposes in road construction.


Chemosphere ◽  
2013 ◽  
Vol 92 (1) ◽  
pp. 38-44 ◽  
Author(s):  
Santos N. Garcia ◽  
Rebekah L. Clubbs ◽  
Jacob K. Stanley ◽  
Brian Scheffe ◽  
Joe C. Yelderman ◽  
...  

10.29007/8gxd ◽  
2018 ◽  
Author(s):  
Rima Dave ◽  
Ketan Timani ◽  
Priti Mehta

The sub grade is a layer of natural soil, prepared to receive the layers of pavement. The thickness of pavement depends upon the properties of sub grade. Sub grade should be strong enough to take up the stresses imposed due to loads with out shear failure and excessive deformation. Sub grade soil strength is evaluated in terms of California Bearing Ratio and is used for design of flexible pavement. It can be performed both in the laboratory and field. The CBR test is laborious and time consuming, even though use of CBR as a performance parameter is widely acknowledged. Also it is very difficult to prepare sample at desired in situ density for laboratory testing. The CBR value depends on factors like particle fines, plasticity index, maximum dry density and optimum moisture content. The fine particles have engineering defect and its CBR value is low. This paper presents the effect of fine particles on CBR value. For the laboratory investigation, specimens were fabricated at optimum moisture content and maximum dry density by heavy compaction with varying proportion of sand, silt-clay and fine gravel mixtures. The samples were soaked in water for four days to simulate highly unfavorable condition. Correlation coefficient between fine particles and laboratory CBR values are obtained. Various linear relationships between index properties and CBR of the samples are investigated using linear regression analysis. Analysis of the experimental data indicated that there exist a good correlation among the measured value and predicted value of CBR


2019 ◽  
pp. 233-238
Author(s):  
Stig Larsson

Short rotation willow coppice (Salix) can be used as vegetation filter to treat industrialand municipal wastewater. In May 1998 a EU-FAIR project, "Biomass short rotationwillow coppice fertilized with nutrient from municipal wastewater (BWCW)" wasstarted to investigate the consequences to establish willow plantations to treatwastewater in some European countries with varying climatic conditions. The aims ofthis research project were to evaluate the positive effects of irrigation of willow-toenergy plantations with wastewater, but also to find the negative consequences and todevelop strategies to deal with them. The project comprises comparable pilot plantationslocated in four different climatic regions in the four European countries: France, Greece,Unite Kingdom and Sweden. In this paper the experiences from this EU research projectBWCW, which will be finished off in 2002, are briefly described.


2021 ◽  
Vol 896 ◽  
pp. 165-172
Author(s):  
Jordy Frank Viso Chachayma ◽  
Jhian Franco Torres Alvarez ◽  
Gary Durán Ramírez ◽  
Carlos Mario Fernández Díaz

The purpose of this research is to improve the parameters of shear strength in granular volcanic soil, by adding a percentage of Portland type I cement. The first step for this research was to classify the soil through a Granulometry test, according to the Unified Soil Classification System (USCS), the result was considered as a poorly graded sand with gravel also considered by The American Association of State Highway and Transportation Officials (AASHTO) as “A-1-b”. In addition, the compaction curve of the volcanic soil has a Maximum Dry Density (MDD) of 1.21 kg/cm2 and an optimum moisture content of 17.8%. Also, the friction angle of 33.5° and a cohesion of 0 kg/cm2, and the results of the Direct Shear Test indicate the Residual Stresses of 0.63, 1.34 and 2.65 kg/cm2 according to the Normal Stresses 1, 2 and 4 kg/cm2, respectively. The second step was to apply a Modified Proctor Test as following: one sample for natural soil and four samples adding 3%, 5%, 7% and 9% of cement. Finally, applied the Direct Shear Test: one sample for natural soil and three samples adding 3%, 5%, and 7% of cement after 7 days of curing, then three more samples are taken adding 3, 5% and 7% of cement at 14 days of curing. The results of the Modified Proctor Test of the volcanic soil with the addition of 5% cement has a maximum peak of a Maximum Dry Density of 1.33 kg/cm2 and with an Optimal Moisture Content of 22.7%, improved the MDD by 10% in regard to the natural soil. And the results of the Direct Shear Test shown in each sample an increase from 14.6% to 79.1% in the friction angle in comparison with the natural soil from 25.8% to 161.5% in shear strength. Likewise, the behavior of the volumetric deformation is shown, presenting a greater contraction when a normal stress of 1 kg/cm2 is applied and a greater expansion when a normal stress of 4 kg/cm2 is applied. Also, the volcanic soil at 7 days of curing with 7% cement addition increases its resistance by 67.34% and the volumetric variation decreases by 50% and the volcanic soil at 14 days of curing with 5% addition of cement increases its resistance by 103.40% and the volumetric variation decreases by 25%.


2018 ◽  
Vol 1 (March 2018) ◽  
Author(s):  
S.I Adedokun ◽  
J.R Oluremi ◽  
N.T Adekilekun ◽  
O.V Adeola

This paper investigated the effect of cement kiln dust (CKD) on the geotechnical properties of clay. Soil sample was collected from clay deposit at Ede North Local Government Area, Osun State, which lies within the geographical coordinates of 7N and 4E, was treated with up to 10% CKD. Sieve analysis, specific gravity, consistency limits, compaction (British Standard Light, BSL and West African Standard, WAS) and California Bearing Ratio (CBR) tests were carried out on both treated and untreated soil samples. Results showed that Ede clay is an A-7- 6 soil. Specific gravity increased from 2.61 to 2.91 with increase in CKD from 0 to 10%, maximum dry density (MDD) of the natural soil sample increased from 1.72 and 1.76 g/m’ to 1.84 and 1.85 g/m’ at 8% CKD for BSL and WAS, respectively. The unsoaked CBR of the specimen increased from 17 to 35% for 0-10% addition of CKD, and a similar trend was observed for the 24 hours soaked CBR values. This study indicated that CKD, though regarded as waste material, can be used to improve the geotechnical properties of Ede clay.


Sign in / Sign up

Export Citation Format

Share Document