RECOVERY OF RAT'S HEART AND RESPIRATION FUNCTIONING DURING EMERGENCE FROM DEEP HYPOTHERMIA IN THE PROCESS OF SELF-HEATING AND WITH AN EXTERNAL HEATER

2021 ◽  
Vol 55 (4) ◽  
pp. 78-85
Author(s):  
N.K. Arokina ◽  

The article presents modeling of the organism emergence from hypothermia preceded by cardiac arrest. Experiments were performed with anaesthetized Wistar male rats and monitoring the breathing rate, heart rate, blood pressure, arterial oxygen saturation, rectal and esophagal temperature. Rats were kept immersed in water at 8–10 °С till the respiratory arrest and cardiac activity reduction. In 5 minutes, artificial ventilation was administered to restore a normal cardiac rhythm and rate. In one model, the rats had to warm themselves after withdrawal from water. In the other, the rats were held in water till arrest of the previously activated heart. Afterwards the rat's chest wall was heated to restore the cardiac activity. Artificial ventilation was stopped when animal showed signs of breathing. According to the results, in the second model anoxia together with a deeper cooling slowed down recovery of the cardiac and breathing functions. These experimental models can be used for verification of procedures of emergence from deep hypothermia and testing resuscitation pharmaceuticals.

Author(s):  
You Wu ◽  
Tam L. Nguyen ◽  
Carrie E. Perlman

In the neonatal (NRDS) and acute (ARDS) respiratory distress syndromes, mechanical ventilation supports gas exchange but can cause ventilation-induced lung injury (VILI) that contributes to high mortality. Further, surface tension, T, should be elevated and VILI is proportional to T. Surfactant therapy is effective in NRDS but not ARDS. Sulforhodamine B (SRB) is a potential alternative T-lowering therapeutic. In anesthetized male rats, we injure the lungs with 15 min of 42 ml/kg tidal volume, VT, and zero end-expiratory pressure ventilation. Then, over 4 hrs, we support the rats with protective ventilation - VT of 6 ml/kg with positive end-expiratory pressure. At the start of the support period, we administer intravenous non-T­-altering fluorescein (targeting 27 mM in plasma) without or with therapeutic SRB (10 nM). Throughout the support period, we increase inspired oxygen fraction, as necessary, to maintain >90% arterial oxygen saturation. At the end of the support period we sacrifice the rat; sample systemic venous blood for injury marker ELISAs; excise the lungs; combine confocal microscopy and servo-nulling pressure measurement to determine T in situ in the lungs; image fluorescein in alveolar liquid to assess local permeability; and determine lavage protein content and wet-to-dry ratio (W/D), both to assess global permeability. Lungs exhibit focal injury. Surface tension is elevated 72% throughout control lungs and in uninjured regions of SRB-treated lungs, but normal in injured regions of treated lungs. Sulforhodamine B administration improves oxygenation, reduces W/D and reduces plasma injury markers. Intravenous SRB holds promise as a therapy for respiratory distress.


Author(s):  
You Wu ◽  
Tam L. Ngyuen ◽  
Carrie E. Perlman

AbstractIn the neonatal (NRDS) and acute (ARDS) respiratory distress syndromes, mechanical ventilation supports gas exchange but can cause ventilation-induced lung injury (VILI) that contributes to high mortality. Further, surface tension, T, should be elevated and VILI is proportional to T. Surfactant therapy is effective in NRDS but not ARDS. Sulforhodamine B (SRB) is a potential alternative T-lowering therapeutic. In anesthetized male rats, we injure the lungs with 15 min of 42 ml/kg tidal volume, VT, and zero end-expiratory pressure ventilation. Then, over 4 hrs, we support the rats with protective ventilation – VT of 6 ml/kg with positive end-expiratory pressure. At the start of the support period, we administer intravenous non-T-altering fluorescein (targeting 27 μM in plasma) without or with therapeutic SRB (10 nM). Throughout the support period, we increase inspired oxygen fraction, as necessary, to maintain >90% arterial oxygen saturation. At the end of the support period we sacrifice the rat; sample systemic venous blood for injury marker ELISAs; excise the lungs; combine confocal microscopy and servo-nulling pressure measurement to determine T in situ in the lungs; image fluorescein in alveolar liquid to assess local permeability; and determine lavage protein content and wet-to-dry ratio (W/D), both to assess global permeability. Lungs exhibit focal injury. Surface tension is elevated 72% throughout control lungs and in uninjured regions of SRB-treated lungs, but normal in injured regions of treated lungs. Sulforhodamine B administration improves oxygenation, reduces W/D and reduces plasma injury markers. Intravenous SRB holds promise as a therapy for respiratory distress.New and NoteworthySulforhodmaine B lowers T. Given the problematic intratracheal delivery of surfactant therapy for ARDS, intravenous SRB might constitute an alternative therapeutic. In a lung injury model, we find that intravenously administered SRB crosses the injured alveolar-capillary barrier, reduces T specifically in injured lung regions, improves oxygenation and reduces the degree of further lung injury. Intravenous SRB administration might help respiratory distress patients, including those with the novel coronavirus, avoid mechanical ventilation or, once ventilated, survive.


2021 ◽  
Vol 376 (1830) ◽  
pp. 20200224 ◽  
Author(s):  
J. Chris McKnight ◽  
Alexander Ruesch ◽  
Kimberley Bennett ◽  
Mathijs Bronkhorst ◽  
Steve Balfour ◽  
...  

Sensory ecology and physiology of free-ranging animals is challenging to study but underpins our understanding of decision-making in the wild. Existing non-invasive human biomedical technology offers tools that could be harnessed to address these challenges. Functional near-infrared spectroscopy (fNIRS), a wearable, non-invasive biomedical imaging technique measures oxy- and deoxyhaemoglobin concentration changes that can be used to detect localized neural activation in the brain. We tested the efficacy of fNIRS to detect cortical activation in grey seals ( Halichoerus grypus ) and identify regions of the cortex associated with different senses (vision, hearing and touch). The activation of specific cerebral areas in seals was detected by fNIRS in responses to light (vision), sound (hearing) and whisker stimulation (touch). Physiological parameters, including heart and breathing rate, were also extracted from the fNIRS signal, which allowed neural and physiological responses to be monitored simultaneously. This is, to our knowledge, the first time fNIRS has been used to detect cortical activation in a non-domesticated or laboratory animal. Because fNIRS is non-invasive and wearable, this study demonstrates its potential as a tool to quantitatively investigate sensory perception and brain function while simultaneously recording heart rate, tissue and arterial oxygen saturation of haemoglobin, perfusion changes and breathing rate in free-ranging animals. This article is part of the theme issue ‘Measuring physiology in free-living animals (Part I)’.


2020 ◽  
Vol 91 (10) ◽  
pp. 785-789
Author(s):  
Dongqing Wen ◽  
Lei Tu ◽  
Guiyou Wang ◽  
Zhao Gu ◽  
Weiru Shi ◽  
...  

INTRODUCTION: We compared the physiological responses, psychomotor performances, and hypoxia symptoms between 7000 m and 7500 m (23,000 and 24,600 ft) exposure to develop a safer hypoxia training protocol.METHODS: In altitude chamber, 66 male pilots were exposed to 7000 and 7500 m. Heart rate and arterial oxygen saturation were continuously monitored. Psychomotor performance was assessed using the computational task. The hypoxic symptoms were investigated by a questionnaire.RESULTS: The mean duration time of hypoxia was 323.0 56.5 s at 7000 m and 218.2 63.3 s at 7500 m. The 6-min hypoxia training was completed by 57.6% of the pilots and 6.1% of the pilots at 7000 m and at 7500 m, respectively. There were no significant differences in pilots heart rates and psychomotor performance between the two exposures. The Spo2 response at 7500 m was slightly severer than that at 7000 m. During the 7000 m exposure, pilots experienced almost the same symptoms and similar frequency order as those during the 7500 m exposure.CONCLUSIONS: There were concordant symptoms, psychomotor performance, and very similar physiological responses between 7000 m and 7500 m during hypoxia training. The results indicated that 7000-m hypoxia awareness training might be an alternative to 7500-m hypoxia training with lower DCS risk and longer experience time.Wen D, Tu L, Wang G, Gu Z, Shi W, Liu X. Psychophysiological responses of pilots in hypoxia training at 7000 and 7500 m. Aerosp Med Hum Perform. 2020; 91(10):785789.


2014 ◽  
Vol 17 (3) ◽  
pp. 173 ◽  
Author(s):  
Murat Ugurlucan ◽  
Eylem Yayla Tuncer ◽  
Fusun Guzelmeric ◽  
Eylul Kafali ◽  
Omer Ali Sayin ◽  
...  

<p><strong>Background</strong>: Although the avoidance of cardiopulmonary bypass during the Fontan procedure has potential advantages, using cardiopulmonary bypass during this procedure has no adverse effects in terms of morbidity and mortality rates. In this study, we assessed the postoperative outcomes of our first 9 patients who have undergone extracardiac Fontan operation by the same surgeon using cardiopulmonary bypass.</p><p><strong>Methods</strong>: Between September 2011 and April 2013,  9 consecutive patients (3 males and 6 females) underwent extra-cardiac Fontan operation. All operations were performed under cardiopulmonary bypass at normothermia by the same surgeon.  The age of patients ranged between 4 and 17 (9.8 ± 4.2) years. Previous operations performed on these patients were modified Blalock-Taussig shunt procedure in 2 patients, bidirectional cavopulmonary shunt operation in 6 patients, and pulmonary arterial banding in 1 patient. Except 2 patients who required intracardiac intervention, cross-clamping was not applied. In all patients, the extracardiac Fontan procedure was carried out by interposing an appropriately sized tube graft between the infe-rior vena cava and right pulmonary artery.</p><p><strong>Results</strong>: The mean intraoperative Fontan pressure and transpulmonary gradient were 12.3 ± 2.5 and 6.9 ± 2.2 mm Hg, respectively. Intraoperative fenestration was not required. There was no mortality and 7 patients were discharged with-out complications. Complications included persistent pleural effusion in 1 patient and a transient neurological event in 1 patient. All patients were weaned off mechanical ventila-tion within 24 hours. The mean arterial oxygen saturation increased from 76.1% ± 5.3% to 93.5% ± 2.2%. All patients were in sinus rhythm postoperatively. Five patients required blood and blood-product transfusions. The mean intensive care unit and hospital stay periods were 2.9 ± 1.7 and 8.2 ±  1.9 days, respectively.</p><p><strong>Conclusions</strong>: The extracardiac Fontan operation per-formed using cardiopulmonary bypass provides satisfactory results in short-term follow-up and is associated with favor-able postoperative hemodynamics and morbidity rates.</p>


2020 ◽  
Vol 120 (12) ◽  
pp. 2693-2704
Author(s):  
Erika Schagatay ◽  
Alexander Lunde ◽  
Simon Nilsson ◽  
Oscar Palm ◽  
Angelica Lodin-Sundström

Abstract Purpose Hypoxia and exercise are known to separately trigger spleen contraction, leading to release of stored erythrocytes. We studied spleen volume and hemoglobin concentration (Hb) during rest and exercise at three altitudes. Methods Eleven healthy lowlanders did a 5-min modified Harvard step test at 1370, 3700 and 4200 m altitude. Spleen volume was measured via ultrasonic imaging and capillary Hb with Hemocue during rest and after the step test, and arterial oxygen saturation (SaO2), heart rate (HR), expiratory CO2 (ETCO2) and respiratory rate (RR) across the test. Results Resting spleen volume was reduced with increasing altitude and further reduced with exercise at all altitudes. Mean (SE) baseline spleen volume at 1370 m was 252 (20) mL and after exercise, it was 199 (15) mL (P < 0.01). At 3700 m, baseline spleen volume was 231 (22) mL and after exercise 166 (12) mL (P < 0.05). At 4200 m baseline volume was 210 (23) mL and after exercise 172 (20) mL (P < 0.05). After 10 min, spleen volume increased to baseline at all altitudes (NS). Baseline Hb increased with altitude from 138.9 (6.1) g/L at 1370 m, to 141.2 (4.1) at 3700 m and 152.4 (4.0) at 4200 m (P < 0.01). At all altitudes Hb increased from baseline during exercise to 146.8 (5.7) g/L at 1370 m, 150.4 (3.8) g/L at 3700 m and 157.3 (3.8) g/L at 4200 m (all P < 0.05 from baseline). Hb had returned to baseline after 10 min rest at all altitudes (NS). The spleen-derived Hb elevation during exercise was smaller at 4200 m compared to 3700 m (P < 0.05). Cardiorespiratory variables were also affected by altitude during both rest and exercise. Conclusions The spleen contracts and mobilizes stored red blood cells during rest at high altitude and contracts further during exercise, to increase oxygen delivery to tissues during acute hypoxia. The attenuated Hb response to exercise at the highest altitude is likely due to the greater recruitment of the spleen reserve during rest, and that maximal spleen contraction is reached with exercise.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xu Ma ◽  
Bing Jie ◽  
Dong Yu ◽  
Ling-Ling Li ◽  
Sen Jiang

Abstract Background The life-threatening haemorrhagic complications of pulmonary arteriovenous malformations (PAVMs) are extremely rare, and only described in isolated cases. This study was designed to comprehensively investigate management of ruptured PAVMs. Methods We retrospectively assessed clinical and imaging data of ruptured PAVMs to summarize incidence, clinical characteristics, and outcomes following embolisation between January 2008 and January 2021. Results Eighteen of 406 (4.4%) patients with PAVMs developed haemorrhagic complications. Twelve of 18 patients were clinically diagnosed with hereditary haemorrhagic telangiectasia (HHT). Haemorrhagic complications occurred with no clear trigger in all cases. Eight of 18 patients (44.4%) were initially misdiagnosed or had undergone early ineffective treatment. 28 lesions were detected, with 89.3% of them located in peripheral lung. Computed tomography angiography (CTA) showed indirect signs to indicate ruptured PAVMs in all cases. Lower haemoglobin concentrations were associated with the diameter of afferent arteries in the ruptured lesions. Successful embolotherapy was achieved in all cases. After embolotherapy, arterial oxygen saturation improved and bleeding was controlled (P < 0.05). The mean follow-up time was 3.2 ± 2.5 years (range, 7 months to 10 years). Conclusions Life threatening haemorrhagic complications of PAVMs are rare, they usually occur without a trigger and can be easily misdiagnosed. HHT and larger size of afferent arteries are major risk factors of these complications. CTA is a useful tool for diagnosis and therapeutic guidance for ruptured PAVMs. Embolotherapy is an effective therapy for this life-threatening complication.


Children ◽  
2021 ◽  
Vol 8 (5) ◽  
pp. 361
Author(s):  
Ena Pritišanac ◽  
Berndt Urlesberger ◽  
Bernhard Schwaberger ◽  
Gerhard Pichler

Continuous monitoring of arterial oxygen saturation by pulse oximetry (SpO2) is the main method to guide respiratory and oxygen support in neonates during postnatal stabilization and after admission to neonatal intensive care unit. The accuracy of these devices is therefore crucial. The presence of fetal hemoglobin (HbF) in neonatal blood might affect SpO2 readings. We performed a systematic qualitative review to investigate the impact of HbF on SpO2 accuracy in neonates. PubMed/Medline, Embase, Cumulative Index to Nursing & Allied Health database (CINAHL) and Cochrane library databases were searched from inception to January 2021 for human studies in the English language, which compared arterial oxygen saturations (SaO2) from neonatal blood with SpO2 readings and included HbF measurements in their reports. Ten observational studies were included. Eight studies reported SpO2-SaO2 bias that ranged from −3.6%, standard deviation (SD) 2.3%, to +4.2% (SD 2.4). However, it remains unclear to what extent this depends on HbF. Five studies showed that an increase in HbF changes the relation of partial oxygen pressure (paO2) to SpO2, which is physiologically explained by the leftward shift in oxygen dissociation curve. It is important to be aware of this shift when treating a neonate, especially for the lower SpO2 limits in preterm neonates to avoid undetected hypoxia.


Author(s):  
Ewa Zwierzyńska ◽  
Agata Krupa-Burtnik ◽  
Bogusława Pietrzak

Abstract Background Retigabine belongs to the novel generation of antiepileptic drugs but its complex mechanism of action causes that the drug might be effective in other diseases, for instance, alcohol dependence. It is known that ethanol abuse impaired the function of brain structures associated with memory and learning such as the hippocampus. In our previous study, retigabine reduced hippocampal changes induced by ethanol in the EEG rhythms in rabbits. This study is focused on the impact of retigabine on memory processes in male rats receiving alcohol. Methods Memory was evaluated in various experimental models: Morris water maze, Contextual, and Cued Fear Conditioning tests. Retigabine was administered for 3 weeks directly to the stomach via oral gavage at a dose of 10 mg/kg. Rats received also 20% ethanol (5 g/kg/day in two doses) via oral gavage for 3 weeks and had free access to 5% ethanol in the afternoon and at night. Morris water maze was performed after 1 and 3 weeks of ethanol administration and after 1 week from the discontinuation of ethanol administration. Contextual and Cued Fear Conditioning tests were carried out after 24 h and 72 h of alcohol discontinuation. Results The drug significantly decreased ethanol-induced memory disturbances during alcohol administration as well as slightly improved learning processes after the discontinuation of ethanol administration. Conclusions This beneficial effect of retigabine-ethanol interaction on memory may be a relevant element of the drug’s impact on the development of addiction.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shinshu Katayama ◽  
Jun Shima ◽  
Ken Tonai ◽  
Kansuke Koyama ◽  
Shin Nunomiya

AbstractRecently, maintaining a certain oxygen saturation measured by pulse oximetry (SpO2) range in mechanically ventilated patients was recommended; attaching the INTELLiVENT-ASV to ventilators might be beneficial. We evaluated the SpO2 measurement accuracy of a Nihon Kohden and a Masimo monitor compared to actual arterial oxygen saturation (SaO2). SpO2 was simultaneously measured by a Nihon Kohden and Masimo monitor in patients consecutively admitted to a general intensive care unit and mechanically ventilated. Bland–Altman plots were used to compare measured SpO2 with actual SaO2. One hundred mechanically ventilated patients and 1497 arterial blood gas results were reviewed. Mean SaO2 values, Nihon Kohden SpO2 measurements, and Masimo SpO2 measurements were 95.7%, 96.4%, and 96.9%, respectively. The Nihon Kohden SpO2 measurements were less biased than Masimo measurements; their precision was not significantly different. Nihon Kohden and Masimo SpO2 measurements were not significantly different in the “SaO2 < 94%” group (P = 0.083). In the “94% ≤ SaO2 < 98%” and “SaO2 ≥ 98%” groups, there were significant differences between the Nihon Kohden and Masimo SpO2 measurements (P < 0.0001; P = 0.006; respectively). Therefore, when using automatically controlling oxygenation with INTELLiVENT-ASV in mechanically ventilated patients, the Nihon Kohden SpO2 sensor is preferable.Trial registration UMIN000027671. Registered 7 June 2017.


Sign in / Sign up

Export Citation Format

Share Document