scholarly journals Application of high performance computing to automotive design and manufacturing: Composite materials modeling task technical manual for constitutive models for glass fiber-polymer matrix composites

1997 ◽  
Author(s):  
S Simunovic ◽  
T Zacharia
Author(s):  
D.G. Zimcik

Advanced composite materials are playing an increasingly important role in the design and fabrication of high performance space structures. Composite materials may be tailored for a particular application to establish a unique combination of high specific stiffness and strength, dimensional stability and specific damping which makes these materials ideal candidates for many applications in the hostile space environment. Demonstrative examples of typical applications to primary structures and payloads, each with a different set of performance requirements, are presented in this paper. Unfortunately, the use of polymer matrix composites for very long exposure to space has not been without problems due to various environmental effects which are discussed. The use of metal matrix composites is proposed as a possible solution to the problem. However, an understanding of the fundamental properties of composites and their response to space environmental effects is essential before the full benefit of these materials can be realized.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 201
Author(s):  
Stefano Paolillo ◽  
Ranjita K. Bose ◽  
Marianella Hernández Santana ◽  
Antonio M. Grande

This article reviews some of the intrinsic self-healing epoxy materials that have been investigated throughout the course of the last twenty years. Emphasis is placed on those formulations suitable for the design of high-performance composites to be employed in the aerospace field. A brief introduction is given on the advantages of intrinsic self-healing polymers over extrinsic counterparts and of epoxies over other thermosetting systems. After a general description of the testing procedures adopted for the evaluation of the healing efficiency and the required features for a smooth implementation of such materials in the industry, different self-healing mechanisms, arising from either physical or chemical interactions, are detailed. The presented formulations are critically reviewed, comparing major strengths and weaknesses of their healing mechanisms, underlining the inherent structural polymer properties that may affect the healing phenomena. As many self-healing chemistries already provide the fundamental aspects for recyclability and reprocessability of thermosets, which have been historically thought as a critical issue, perspective trends of a circular economy for self-healing polymers are discussed along with their possible advances and challenges. This may open up the opportunity for a totally reconfigured landscape in composite manufacturing, with the net benefits of overall cost reduction and less waste. Some general drawbacks are also laid out along with some potential countermeasures to overcome or limit their impact. Finally, present and future applications in the aviation and space fields are portrayed.


2010 ◽  
Vol 139-141 ◽  
pp. 84-89 ◽  
Author(s):  
Hong Chang Qu ◽  
Xiao Zhou Xia ◽  
Hong Yuan Li ◽  
Zhi Qiang Xiong

The mechanical behavior of polymer–matrix composites uniaxially reinforced with carbon or glass fibers subjected to compression/tension perpendicular to the fibers was studied using computational micromechanics. This is carried out using the finite element simulation of a representative volume element of the microstructure idealized as a random dispersion of parallel fibers embedded in the polymeric matrix. Two different interface strength values were chosen to explore the limiting cases of composites with strong or weak interfaces, and the actual failure mechanisms (plastic deformation of the matrix and interface decohesion) are included in the simulations through the corresponding constitutive models. Composites with either perfect or weak fiber/matrix interfaces (the latter introduced through cohesive elements) were studied to assess the influence of interface strength on the composite behavior. It was found that the composite properties under transverse compression/tension were mainly controlled by interface strength and the matrix yield strength in uniaxial compression/tension.


Author(s):  
Arturo Schiaffino ◽  
V. M. Krushnarao Kotteda ◽  
Vinod Kumar ◽  
Arturo Bronson ◽  
Sanjay Shantha-Kumar

Abstract In the manufacturing of metal matrix composites (MMC), liquid-metal reactive infusion with a solid mesh or particles composed of ceramic or metal may be used. The objective of this study is to determine the uncertainty quantification of the modeling of liquid hafnium infusion to expedite the processing and improve properties of MMCs ultimately. Uncertainty quantification (UQ) characterized the uncertainty scientifically especially for high-performance computing with observed physics and/or chemistry of the phenomena and predicted from estimated parameters. In this work, molten hafnium infusing through a boron carbide packed bed is modeled to optimize the manufacturing of components used for a hypersonic vehicle. The creation of molten matrix composites by the infiltration of molten metal represents a formidable challenge to be accurately modeled. First, the structural randomness associated with porous mediums complicates the prediction of the flow passing through it. Secondly, the properties of the molten metal could vary inside our control volume, since the temperature inside the control volume is not constant. Also, there are several chemical reactions and solidification rates occurring in during the impregnation. Given the recent advances in high-performance computing, an in-house pore network simulator are implemented along with Dakota, an open-source, exascale software, to determine the optimal parameters (e.g., porosity and temperature) and uncertainty quantification for the modeling.


Author(s):  
A. Krzyżak ◽  
E. Kosicka ◽  
R. Szczepaniak ◽  
T. Szymczak

Purpose: Carbon nanotubes are used in composite materials due to the improvement of (including tribological) properties of composites, especially thermoplastic matrix composites. This demonstrates the potential of CNTs and the validity of research on determining the impact of this type of reinforcement on the composite materials under development. Design/methodology/approach: The article presents selected results of research on polymer composites made of C.E.S. R70 resin, C.E.S. H72 hardener with the addition of a physical friction modifier (CNTs) with a percentage by volume of 18.16% and 24.42%, respectively, which also acts as a reinforcement. The produced material was subjected to hardness measurements according to the Shore method and EDS analysis. The study of abrasive wear in reciprocating movement was carried out using the Taber Linear Abraser model 5750 tribotester and a precision weight. The surface topography of the composite material after tribological tests was determined using scanning electron microscopy (SEM). Some of the mentioned tests were carried out on samples made only of resin, used as the matrix of the tested polymer composite. Findings: Carbon nanotubes used in polymer matrix composites, including bisphenol A/F epoxy resin have an influence on the tribological properties of the material. The addition of carbon nanotubes contributed to a 24% increase in the Ra parameter relative to pure resin, to a level corresponding to rough grinding of steel. Research limitations/implications: The results of the tests indicate the need to continue research in order to optimize the composition of composites in terms of operating parameters of friction nodes in broadly understood aviation. Originality/value: The analysed literature did not find any studies on the impact of the addition of carbon nanotubes on epoxy resins based on bisphenol A/F. Due to the wide scope of application of such resins, the properties of such composite materials in which carbon nanotubes are the reinforcing phase have been investigated.


2018 ◽  
Vol 48 (1) ◽  
pp. 83-106
Author(s):  
Sławomir Augustyn ◽  
Rafał Kowalski

Abstract This publication presented the main issues related to fatigue of polymer composite materials. It was featured a fatigue stress test based on composite sample, made of carbon fiber-reinforced polymer, using the four-point bending method. The test was carried out with the initial load and using positive load cycles. The perspectives of diagnostics and self-healing of composite materials, including intelligent materials, were also presented.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 60
Author(s):  
Raphael Olabanji Ogunleye ◽  
Sona Rusnakova

This review examines various studies on reducing tensile stresses generated in a polymer matrix composite without increasing the mass or dimension of the material. The sources of residual stresses and their impacts on the developed composite were identified, and the different techniques used in limiting residual stresses were also discussed. Furthermore, the review elaborates on fibre-prestressing techniques based on elastically (EPPMC) and viscoelastically (VPPMC) prestressed polymer matrix composites, while advantages and limitations associated with EPPMC and VPPMC methods are also explained. The report shows that tensile residual stresses are induced in a polymer matrix composite during production as a result of unequal expansion, moisture absorption and chemical shrinkage; their manifestations have detrimental effects on the mechanical properties of the polymer composite. Both EPPMC and VPPMC have great influence in reducing residual stresses in the polymer matrix and thereby improving the mechanical properties of composite materials. The reports from this study provide some basis for selecting a suitable technique for prestressing as well as measuring residual stresses in composite materials.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Tang Zhijin

In recent years, a variety of composite materials preparation technology has been updated, from ceramic matrixcomposites, metal matrix composites to polymer matrix composites, a variety of preparation techniques have beengreatly improved, making the composite properties and applications signifi cantly improved. This paper reviews severalimportant preparation methods and applications of ceramic matrix composites, metal matrix composites and polymermatrix composites.


Sign in / Sign up

Export Citation Format

Share Document