ApoE-Derived Peptides Attenuated Diabetes-Induced Oxidative Stress and Inflammation

2020 ◽  
Vol 27 (3) ◽  
pp. 193-200
Author(s):  
Sunil A. Nankar ◽  
Yogesh Bulani ◽  
Shyam S. Sharma ◽  
Abhay H. Pande

Background: Peptides derived from the apolipoproteins (apo-mimetic peptides) have emerged as a potential candidate for the treatment of various inflammatory conditions. Our previous results have shown that peptides derived from human apolipoprotein-E interact with various pro-inflammatory lipids and inhibit their inflammatory functions in cellular assays. Objective: In this study, two apoE-derived peptides were selected to investigate their antiinflammatory and anti-oxidative effects in streptozotocin-induced diabetic model of inflammation and oxidative stress. Methods: The peptides were injected intraperitoneally into the streptozotocin-induced diabetic rats and their anti-inflammatory and anti-oxidative effects were evaluated by monitoring various oxidative and inflammatory markers. Results: Administration of 4F, E5 and E8 peptides decreased the oxidative and inflammatory markers in STZ-induced diabetic rats to different extent, while had no significant effect on the other diabetic parameters (viz. total body weight of animals and increased blood glucose level). E5 peptide was found to be relatively more effective than 4F and E8 peptides in decreasing inflammation and oxidative stress. Conclusion: E5 peptide can be developed as a potential candidate for inflammatory conditions.

Author(s):  
Basiru Olaitan Ajiboye ◽  
Babatunji Emmanuel Oyinloye ◽  
Jennifer Chidera Awurum ◽  
Sunday Amos Onikanni ◽  
Adedotun Adefolalu ◽  
...  

Abstract Objectives The current study evaluates the protective role of aqueous extract of Sterculia tragacantha leaf (AESTL) on pancreatic gene expressions (insulin, PCNA, PDX-1, KI-67 and GLP-1R) and oxidative stress parameters in streptozotocin-induced diabetic rats. Methods Diabetes mellitus was induced into the experimental Wistar animals via intraperitoneal (IP) injection of streptozotocin (35 mg/kg body weight) and 5% glucose water was given to the rats for 24 h after induction. The animals were categorized into five groups of 10 rats each as follows normal control, diabetic control, diabetic rats administered AESTL (150 and 300 mg/kg body weight) and diabetic rats administered metformin (200 mg/kg) orally for two weeks. Thereafter, the animals were euthanized, blood sample collected, pancreas harvested and some pancreatic gene expressions (such as insulin, PCNA, PDX-1, KI-67, and GLP-1R)s as well as oxidative stress parameters were analyzed. Results The results revealed that AESTL significantly (p<0.05) reduced fasting blood glucose level, food and water intake, and lipid peroxidation in diabetic rats. Diabetic rats administered different doses of AESTL showed a substantial upsurge in body weight, antioxidant enzyme activities, and pancreatic gene expressions (insulin, PCNA, PDX-1, KI-67, and GLP-1R). Conclusions It can therefore be concluded that AESTL has the ability to protect the pancreas during diabetes mellitus conditions.


2016 ◽  
Vol 32 (3) ◽  
pp. 329-336 ◽  
Author(s):  
Abolfazl Nasiri ◽  
Nasrin Ziamajidi ◽  
Roghayeh Abbasalipourkabir ◽  
Mohammad Taghi Goodarzi ◽  
Massoud Saidijam ◽  
...  

Author(s):  
Amal J. Fatani ◽  
Salim S. Al-Rejaie ◽  
Hatem M. Abuohashish ◽  
Abdullah Al-Assaf ◽  
Mihir Y. Parmar ◽  
...  

Toxics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 55
Author(s):  
Nicholas Kurchaba ◽  
Bryan J. Cassone ◽  
Caleb Northam ◽  
Bernadette F. Ardelli ◽  
Christophe M. R. LeMoine

Plastic polymers have quickly become one of the most abundant materials on Earth due to their low production cost and high versatility. Unfortunately, some of the discarded plastic can make its way into the environment and become fragmented into smaller microscopic particles, termed secondary microplastics (MP). In addition, primary MP, purposely manufactured microscopic plastic particles, can also make their way into our environment via various routes. Owing to their size and resilience, these MP can then be easily ingested by living organisms. The effect of MP particles on living organisms is suspected to have negative implications, especially during early development. In this study, we examined the effects of polyethylene MP ingestion for four and ten days of exposure starting at 5 days post-fertilization (dpf). In particular, we examined the effects of polyethylene MP exposure on resting metabolic rate, on gene expression of several inflammatory and oxidative stress linked genes, and on microbiome composition between treatments. Overall, we found no evidence of broad metabolic disturbances or inflammatory markers in MP-exposed fish for either period of time. However, there was a significant increase in the oxidative stress mediator L-FABP that occurred at 15 dpf. Furthermore, the microbiome was disrupted by MP exposure, with evidence of an increased abundance of Bacteroidetes in MP fish, a combination frequently found in intestinal pathologies. Thus, it appears that acute polyethylene MP exposure can increase oxidative stress and dysbiosis, which may render the animal more susceptible to diseases.


2014 ◽  
Vol 70 (3) ◽  
pp. 713-723 ◽  
Author(s):  
Mohamed Salah Allagui ◽  
Anouer Feriani ◽  
Zouhour Bouoni ◽  
Hichem Alimi ◽  
Jean Claud Murat ◽  
...  

Renal Failure ◽  
2015 ◽  
Vol 37 (2) ◽  
pp. 192-197 ◽  
Author(s):  
Aydın Güçlü ◽  
Nilüfer Yonguç ◽  
Yavuz Dodurga ◽  
Gülşah Gündoğdu ◽  
Zuhal Güçlü ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document