Analytical and Preparative Scale Separation of Enantiomers of Chiral Drugs by Chromatography and Related Methods

2018 ◽  
Vol 25 (33) ◽  
pp. 4152-4188 ◽  
Author(s):  
Mehmet Gumustas ◽  
Sibel A. Ozkan ◽  
Bezhan Chankvetadze

While the amino acids, enzymes and hormones are chiral, chirality plays significant role in the life of plants, animals, as well as the human being. Chirality of molecules is important in various industries, such as pharmaceutical, agricultural, food, electronics, etc. Chiral drugs may have different bioavailability, distribution, biotransformation and excretion, as well as quantitatively and/or qualitatively different pharmacological or toxic properties. Enantiomerically pure chiral drugs have been increasingly developed for the pharmaceutical market due to their superiority from the viewpoints of potency and safety. This is supported by the development of new methods for enantioselective production of the chiral compounds, as well as by the capability of the enantioselective analytical methods to allow a detection and quantification of minor enantiomeric impurity in the presence of another enantiomer in a large excess. The aim of the present review is to provide a short summary of the basic principles of chiral separations on an analytical and preparative scale. In addition, some selected applications for analytical techniques, such as gas chromatography, supercritical fluid chromatography, high performance liquid chromatography, capillary electrophoresis and capillary electrochromatography for the separation of enantiomers of chiral pharmaceuticals published in the last two years are also discussed.

2020 ◽  
Vol 16 ◽  
Author(s):  
Pradnya Gunjal ◽  
Sachin Kumar Singh ◽  
Rajesh Kumar ◽  
Rajan Kumar ◽  
Monica Gulati

Background: Chiral purity is a critical quality attribute of pharmaceutical materials as chiral compounds may have different pharmacological and toxicological properties with their enantiomer (or diastereomers for molecules with multiple chiral centers). Getting high quality drugs to the market quickly is essential for the survival of pharmaceutical companies and in drug research and development. It is important note that about 40% of all man-made synthetic drugs are chiral, 60% of all pharmaceuticals are chiral and 45% chiral drugs are sold as racemate. So, the objective of the current review is to discuss various chromatographic techniques used for the separation of chiral compounds. Methods: Various bibliographic databases of previously published peer-reviewed research papers were explored and systematic data has been culminated in terms of various chromatographic techniques used for chiral compounds’ separation. A comparison of different techniques as well as their advantages are also discussed. Results: A comprehensive review of 130 papers including both, research and review articles, was carried out to make the article readily understandable. The analytical techniques have been discussed in detail. Apart from chromatographic techniques, other techniques such as circular dichroism, nuclear magnetic resonance, UV-visible spectroscopy using cyclodextrin derivatives have also been highlighted with proper citation of references. Conclusion: The pharmaceutical industries need analytical methods to conclude enantiomeric concentration and obtain a drug with single stereo configuration. The sensitive techniques such as HPLC, GCMS and LCMS etc. are used for identification and quantification of limited quantities of single enantiomers, specifically in drug discovery and development.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sopon Butcha ◽  
Sunpet Assavapanumat ◽  
Somlak Ittisanronnachai ◽  
Veronique Lapeyre ◽  
Chularat Wattanakit ◽  
...  

AbstractThe design of efficient chiral catalysts is of crucial importance since it allows generating enantiomerically pure compounds. Tremendous efforts have been made over the past decades regarding the development of materials with enantioselective properties for various potential applications ranging from sensing to catalysis and separation. Recently, chiral features have been generated in mesoporous metals. Although these monometallic matrices show interesting enantioselectivity, they suffer from rather low stability, constituting an important roadblock for applications. Here, a straightforward strategy to circumvent this limitation by using nanostructured platinum-iridium alloys is presented. These materials can be successfully encoded with chiral information by co-electrodeposition from Pt and Ir salts in the simultaneous presence of a chiral compound and a lyotropic liquid crystal as asymmetric template and mesoporogen, respectively. The alloys enable a remarkable discrimination between chiral compounds and greatly improved enantioselectivity when used for asymmetric electrosynthesis (>95 %ee), combined with high electrochemical stability.


2016 ◽  
Vol 5 (01) ◽  
pp. 4701
Author(s):  
Shobha R. I. ◽  
Andallu B.

Nature has provided mankind with a broad and structurally diverse array of pharmacologically active chemical compounds, phytoceuticals, which have proved to be indispensable for the cure of chronic diseases or as lead structures for novel therapeutic agents. Almost, 70% of modern medicines in India have been developed from plants used in the traditional system of medicine. With the technological advances and the development of more sophisticated isolation and analytical techniques, there is great scope for further systematic research to screen and isolate many more phytoceuticals which might be more effective/as effective as synthetic drugs and thereby assess their potential in protecting against chronic diseases. The present investigation is aimed at isolation and identification of phytoceuticals in a spice, aniseed (Pimpinella anisum L), therapeutically less-exploited and widely used only for culinary purpose, using analytical techniques viz. column chromatography, high performance thin layer chromatography (HPTLC.) and nuclear magnetic resonance spectrometry. Among all the solvent fractions of methanolic extract tested, methanolic extract and ethyl acetate fraction possessed highest amounts of bioactive compounds viz. phenolics, flavonoids, flavonols which was confirmed by qualitative, quantitative and HPTLC. analyses. Spectral analysis using NMR. of one of the sub-fractions of aniseeds obtained by column chromatography, revealed the presence of a glycosylated flavone, luteolin-6C-glucoside in aniseeds.  The present study revealed aniseeds to be a great source of bioactive phytoceuticals which can be novel candidates for development of new therapeutic agents.


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 781
Author(s):  
Agnieszka Raczyńska ◽  
Joanna Jadczyk ◽  
Małgorzata Brzezińska-Rodak

The enantioselective synthesis of organic compounds is one of the great challenges in organic synthetic chemistry due to its importance for the acquisition of biologically active derivatives, e.g., pharmaceuticals, agrochemicals, and others. This is why biological systems are increasingly applied as tools for chiral compounds synthesis or modification. The use of whole cells of “wild-type” microorganisms is one possible approach, especially as some methods allow improving the conversion degrees and controlling the stereoselectivity of the reaction without the need to introduce changes at the genetic level. Simple manipulation of the culture conditions, the form of a biocatalyst, or the appropriate composition of the biotransformation medium makes it possible to obtain optically pure products in a cheap, safe, and environmentally friendly manner. This review contains selected examples of the influence of physicochemical factors on the stereochemistry of the biocatalytic preparation of enantiomerically pure compounds, which is undertaken through kinetically controlled separation of their racemic mixtures or reduction of prochiral ketones and has an effect on the final enantiomeric purity and enantioselectivity of the reaction.


Amino Acids ◽  
2021 ◽  
Author(s):  
Grażyna Gałęzowska ◽  
Joanna Ratajczyk ◽  
Lidia Wolska

AbstractThe quantitation and qualification of amino acids are most commonly used in clinical and epidemiological studies, and provide an excellent way of monitoring compounds in human fluids which have not been monitored previously, to prevent some diseases. Because of this, it is not surprising that scientific interest in evaluating these compounds has resurfaced in recent years and has precipitated the development of a multitude of new analytical techniques. This review considers recent developments in HPLC analytics on the basis of publications from the last few years. It helps to update and systematize knowledge in this area. Particular attention is paid to the progress of analytical methods, pointing out the advantages and drawbacks of the various techniques used for the preparation, separation and determination of amino acids. Depending on the type of sample, the preparation conditions for HPLC analysis change. For this reason, the review has focused on three types of samples, namely urine, blood and cerebrospinal fluid. Despite time-consuming sample preparation before HPLC analysis, an additional derivatization technique should be used, depending on the detection technique used. There are proposals for columns that are specially modified for amino acid separation without derivatization, but the limit of detection of the substance is less beneficial. In view of the fact that amino acid analyses have been performed for years and new solutions may generate increased costs, it may turn out that older proposals are much more advantageous.


Sign in / Sign up

Export Citation Format

Share Document