Comparative Assay of 2D and 3D Cell Culture Models: Proliferation, Gene Expression and Anticancer Drug Response

2018 ◽  
Vol 24 (15) ◽  
pp. 1689-1694 ◽  
Author(s):  
Aline G. Souza ◽  
Isaura Beatriz B. Silva ◽  
Esther Campos-Fernandez ◽  
Leticia S. Barcelos ◽  
Jessica Brito Souza ◽  
...  

Background: In vitro tests allow establishing experimental variables. However, in vitro results cannot be extrapolated to in vivo tests. Considering that three-dimensional (3D) culture has been one of the best ways to portray the in vivo system of most cell types, it is possible to carry out assays with a great clinical relevance for the analysis of the screening, action and resistance of antitumor drugs. Objective: Thus, the objective of the present study was to compare between 2D and 3D cell culture forms to conclude which is the most suitable model for preclinical in vitro drug testing. Method: We evaluated the proliferation, genetic expression and chemoresistance of prostate tumor cell lines, PC- 3, LNCaP and DU145. Prostate tumor cell lines PC-3, LNCaP and DU145 were treated with the antineoplastic drugs paclitaxel and docetaxel and evaluated with cytotoxicity, cell proliferation and gene expression assays in 2D and magnetic 3D bioprinting cultures. Results: Lower cell proliferation rate, more resistance to paclitaxel and docetaxel and altered gene expression profile was shown in 3D cell culture comparing with its 2D counterpart. Conclusion: 3D cell culture exhibited a more similar behavior to in vivo systems, being a promising and more reliable tool for the development of new drugs.

1988 ◽  
Vol 8 (10) ◽  
pp. 4492-4501 ◽  
Author(s):  
C D Woodworth ◽  
J W Kreider ◽  
L Mengel ◽  
T Miller ◽  
Y L Meng ◽  
...  

Five simian virus 40 (SV40)-hepatocyte cell lines were examined for tumorigenicity and the effect of in vitro passage on the expression of four liver-specific genes (albumin, transferrin, alpha 1-antitrypsin, and phosphoenolpyruvate carboxykinase), two oncogenes (c-Ha-ras and c-raf), and two genes associated with hepatocarcinogenesis (alpha-fetoprotein and placental-type glutathione-S-transferase). At low passage (12 to 22), all five cell lines expressed the four liver-specific genes at levels similar to those in the liver and were not tumorigenic or were weakly tumorigenic. At high passage (33 to 61), the cell lines formed carcinomas, and four out of five cell lines produced primary tumors that metastasized. At least two cell lines produced well-differentiated hepatocellular carcinomas that expressed liver-specific RNAs. Levels of expression of liver-specific genes changed with time in culture. Some of the changes in liver-specific gene expression in the tumor tissue (such as for the phosphoenolpyruvate carboxykinase gene) paralleled those that occurred with in vitro passage, while other changes (such as for the albumin gene) did not parallel those that occurred with in vitro passage. Correlations between enhanced expression of c-Ha-ras and tumorigenic potential and between the process of SV40 immortalization and induced expression of c-raf and glutathione-S-transferase-P were observed. Induction of alpha-fetoprotein was detected with in vitro and in vivo passage only in the CWSV14 cell line and was paralleled by diminished albumin expression. In conclusion, we developed a model system with five SV40-hepatocyte cell lines, tumors induced by them, and tumor cell lines to examine changes in gene expression that accompany the progression from a normal cell to a hepatocellular carcinoma. Because the SV40-hepatocyte cell lines and tumor cell lines remain highly differentiated and vary in the magnitude of expression of specific genes, they can be used to study the molecular mechanisms regulating gene expression, in particular those regulating specific genes associated with differentiation.


2020 ◽  
Vol 116 ◽  
pp. 104520 ◽  
Author(s):  
Bryan Ôrtero Perez Gonçalves ◽  
Sílvia Ligório Fialho ◽  
Bárbara Reis Silvestrini ◽  
Isadora Fernandes Gilson Sena ◽  
Gabryella Soares Pinheiro dos Santos ◽  
...  

1988 ◽  
Vol 8 (10) ◽  
pp. 4492-4501
Author(s):  
C D Woodworth ◽  
J W Kreider ◽  
L Mengel ◽  
T Miller ◽  
Y L Meng ◽  
...  

Five simian virus 40 (SV40)-hepatocyte cell lines were examined for tumorigenicity and the effect of in vitro passage on the expression of four liver-specific genes (albumin, transferrin, alpha 1-antitrypsin, and phosphoenolpyruvate carboxykinase), two oncogenes (c-Ha-ras and c-raf), and two genes associated with hepatocarcinogenesis (alpha-fetoprotein and placental-type glutathione-S-transferase). At low passage (12 to 22), all five cell lines expressed the four liver-specific genes at levels similar to those in the liver and were not tumorigenic or were weakly tumorigenic. At high passage (33 to 61), the cell lines formed carcinomas, and four out of five cell lines produced primary tumors that metastasized. At least two cell lines produced well-differentiated hepatocellular carcinomas that expressed liver-specific RNAs. Levels of expression of liver-specific genes changed with time in culture. Some of the changes in liver-specific gene expression in the tumor tissue (such as for the phosphoenolpyruvate carboxykinase gene) paralleled those that occurred with in vitro passage, while other changes (such as for the albumin gene) did not parallel those that occurred with in vitro passage. Correlations between enhanced expression of c-Ha-ras and tumorigenic potential and between the process of SV40 immortalization and induced expression of c-raf and glutathione-S-transferase-P were observed. Induction of alpha-fetoprotein was detected with in vitro and in vivo passage only in the CWSV14 cell line and was paralleled by diminished albumin expression. In conclusion, we developed a model system with five SV40-hepatocyte cell lines, tumors induced by them, and tumor cell lines to examine changes in gene expression that accompany the progression from a normal cell to a hepatocellular carcinoma. Because the SV40-hepatocyte cell lines and tumor cell lines remain highly differentiated and vary in the magnitude of expression of specific genes, they can be used to study the molecular mechanisms regulating gene expression, in particular those regulating specific genes associated with differentiation.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Laurence Finot ◽  
Eric Chanat ◽  
Frederic Dessauge

AbstractIn vivo study of tissue or organ biology in mammals is very complex and progress is slowed by poor accessibility of samples and ethical concerns. Fortunately, however, advances in stem cell identification and culture have made it possible to derive in vitro 3D “tissues” called organoids, these three-dimensional structures partly or fully mimicking the in vivo functioning of organs. The mammary gland produces milk, the source of nutrition for newborn mammals. Milk is synthesized and secreted by the differentiated polarized mammary epithelial cells of the gland. Reconstructing in vitro a mammary-like structure mimicking the functional tissue represents a major challenge in mammary gland biology, especially for farm animals for which specific agronomic questions arise. This would greatly facilitate the study of mammary gland development, milk secretion processes and pathological effects of viral or bacterial infections at the cellular level, all with the objective of improving milk production at the animal level. With this aim, various 3D cell culture models have been developed such as mammospheres and, more recently, efforts to develop organoids in vitro have been considerable. Researchers are now starting to draw inspiration from other fields, such as bioengineering, to generate organoids that would be more physiologically relevant. In this chapter, we will discuss 3D cell culture systems as organoids and their relevance for agronomic research.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nathan Jeger-Madiot ◽  
Lousineh Arakelian ◽  
Niclas Setterblad ◽  
Patrick Bruneval ◽  
Mauricio Hoyos ◽  
...  

AbstractIn recent years, 3D cell culture models such as spheroid or organoid technologies have known important developments. Many studies have shown that 3D cultures exhibit better biomimetic properties compared to 2D cultures. These properties are important for in-vitro modeling systems, as well as for in-vivo cell therapies and tissue engineering approaches. A reliable use of 3D cellular models still requires standardized protocols with well-controlled and reproducible parameters. To address this challenge, a robust and scaffold-free approach is proposed, which relies on multi-trap acoustic levitation. This technology is successfully applied to Mesenchymal Stem Cells (MSCs) maintained in acoustic levitation over a 24-h period. During the culture, MSCs spontaneously self-organized from cell sheets to cell spheroids with a characteristic time of about 10 h. Each acoustofluidic chip could contain up to 30 spheroids in acoustic levitation and four chips could be ran in parallel, leading to the production of 120 spheroids per experiment. Various biological characterizations showed that the cells inside the spheroids were viable, maintained the expression of their cell surface markers and had a higher differentiation capacity compared to standard 2D culture conditions. These results open the path to long-time cell culture in acoustic levitation of cell sheets or spheroids for any type of cells.


1992 ◽  
Vol 23 (4) ◽  
pp. 891-897 ◽  
Author(s):  
Amato J. Giaccia ◽  
Elizabeth A. Auger ◽  
Albert Koong ◽  
David J. Terris ◽  
Andrew I. Minchinton ◽  
...  

Author(s):  
Mandy Rauschner ◽  
Luisa Lange ◽  
Thea Hüsing ◽  
Sarah Reime ◽  
Alexander Nolze ◽  
...  

Abstract Background The low extracellular pH (pHe) of tumors resulting from glycolytic metabolism is a stress factor for the cells independent from concomitant hypoxia. The aim of the study was to analyze the impact of acidic pHe on gene expression on mRNA and protein level in two experimental tumor lines in vitro and in vivo and were compared to hypoxic conditions as well as combined acidosis+hypoxia. Methods Gene expression was analyzed in AT1 prostate and Walker-256 mammary carcinoma of the rat by Next Generation Sequencing (NGS), qPCR and Western blot. In addition, the impact of acidosis on tumor cell migration, adhesion, proliferation, cell death and mitochondrial activity was analyzed. Results NGS analyses revealed that 147 genes were uniformly regulated in both cell lines (in vitro) and 79 genes in both experimental tumors after 24 h at low pH. A subset of 25 genes was re-evaluated by qPCR and Western blot. Low pH consistently upregulated Aox1, Gls2, Gstp1, Ikbke, Per3, Pink1, Tlr5, Txnip, Ypel3 or downregulated Acat2, Brip1, Clspn, Dnajc25, Ercc6l, Mmd, Rif1, Zmpste24 whereas hypoxia alone led to a downregulation of most of the genes. Direct incubation at low pH reduced tumor cell adhesion whereas acidic pre-incubation increased the adhesive potential. In both tumor lines acidosis induced a G1-arrest (in vivo) of the cell cycle and a strong increase in necrotic cell death (but not in apoptosis). The mitochondrial O2 consumption increased gradually with decreasing pH. Conclusions These data show that acidic pHe in tumors plays an important role for gene expression independently from hypoxia. In parallel, acidosis modulates functional properties of tumors relevant for their malignant potential and which might be the result of pH-dependent gene expression.


2018 ◽  
Vol 97 (4) ◽  
pp. e632-e640 ◽  
Author(s):  
Miltiadis Fiorentzis ◽  
Periklis Katopodis ◽  
Helen Kalirai ◽  
Berthold Seitz ◽  
Arne Viestenz ◽  
...  

2020 ◽  
Author(s):  
Iolanda Ferro ◽  
Jacopo Gavini ◽  
Lisamaria Bracher ◽  
Marc Landolfo ◽  
Daniel Candinas ◽  
...  

AbstractThe small non-coding vault RNA (vtRNA) 1-1 has been shown to confer apoptosis resistance in several malignant cell lines and also to modulate the autophagic flux in hepatocytes, thus highlighting its pro-survival role. Here we describe a new function of vtRNA1-1 in regulating in vitro and in vivo tumor cell proliferation, tumorigenesis and chemoresistance. By activating extracellular signal-regulated kinases (ERK 1/2), vtRNA1-1 knock-out (KO) inhibits transcription factor EB (TFEB), leading to a downregulation of the coordinated lysosomal expression and regulation (CLEAR) network genes and lysosomal compartment dysfunction. Pro-tumorigenic pathways dysregulation and decreased lysosome functionality potentiate the anticancer effect of conventional targeted cancer drugs in the absence of vtRNA1-1. Finally, vtRNA1-1 KO-reduced lysosomotropism, together with a higher intracellular compound availability, significantly reduced tumor cell proliferation in vitro and in vivo. These findings reveal the role of vtRNA1-1 in ensuring intracellular catabolic compartment stability and functionality, suggesting its importance in lysosome-mediated chemotherapy resistance.


Sign in / Sign up

Export Citation Format

Share Document