Developing Novel Anticancer Drugs for Targeted Populations: An Update

2020 ◽  
Vol 26 ◽  
Author(s):  
Tadesse Bekele Tafesse ◽  
Mohammed Hussen Bule ◽  
Fazlullah Khan ◽  
Mohammad Abdollahi ◽  
Mohsen Amini

Background: Due to higher failure rates, lengthy time and high cost of the traditional de novo drug discovery and development process; the rate of opportunity to get new, safe and efficacious drugs for the targeted population including pediatric patients with cancer becomes sluggish. Objectives: This paper discusses the development of novel anticancer drugs focusing on the identification and selection of target anticancer drug development for the targeted population. Methods: Information presented in this review was obtained from different databases including PUBMED, SCOPUS, Web of Science, and EMBASE. Various keywords were used as search terms. Results: The pharmaceutical companies currently are executing drug repurposing as an alternative means to accelerate the drug development process that reduces the risk of failure, time and cost, which takes 3-12 years with almost 25% overall probability of success as compared to de novo drug discovery and development process (10-17 years) which has less than 10% probability of success. An alternative strategy to the traditional de novo drug discovery and development process, called drug repurposing, is also presented. Conclusion: Therefore, to continue with the progress of developing novel anticancer drugs towards the targeted population, identification and selection of the target to the specific disease type is important considering the aspects of the age of the patient and the disease stages such as each cancer types are different when we consider the disease at a molecular level. Drug repurposing technique becomes an influential alternative strategy to discover and develop novel anticancer drug candidates.

2019 ◽  
Vol 7 (6) ◽  
pp. 62-67 ◽  
Author(s):  
Amol B Deore ◽  
Jayprabha R Dhumane ◽  
Rushikesh Wagh ◽  
Rushikesh Sonawane

Drug discovery is a process which aims at identifying a compound therapeutically useful in curing and treating disease. This process involves the identification of candidates, synthesis, characterization, validation, optimization, screening and assays for therapeutic efficacy. Once a compound has shown its significance in these investigations, it will initiate the process of drug development earlier to clinical trials. New drug development process must continue through several stages in order to make a medicine that is safe, effective, and has approved all regulatory requirements. One overall theme of our article is that the process is sufficiently long, complex, and expensive so that many biological targets must be considered for every new medicine ultimately approved for clinical use and new research tools may be needed to investigate each new target.  From initial discovery to a marketable medicine is a long, challenging task. It takes about 12 - 15 years from discovery to the approved medicine and requires an investment of about US $1 billion. On an average, a million molecules screened but only a single is explored in late stage clinical trials and is finally made obtainable for patients. This article provides a brief outline of the processes of new drug discovery and development.   


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Hyeong-Min Lee ◽  
Yuna Kim

Better the drugs you know than the drugs you do not know. Drug repurposing is a promising, fast, and cost effective method that can overcome traditional de novo drug discovery and development challenges of targeting neuropsychiatric and other disorders. Drug discovery and development targeting neuropsychiatric disorders are complicated because of the limitations in understanding pathophysiological phenomena. In addition, traditional de novo drug discovery and development are risky, expensive, and time-consuming processes. One alternative approach, drug repurposing, has emerged taking advantage of off-target effects of the existing drugs. In order to identify new opportunities for the existing drugs, it is essential for us to understand the mechanisms of action of drugs, both biologically and pharmacologically. By doing this, drug repurposing would be a more effective method to develop drugs against neuropsychiatric and other disorders. Here, we review the difficulties in drug discovery and development in neuropsychiatric disorders and the extent and perspectives of drug repurposing.


2020 ◽  
Vol 9 (5) ◽  
pp. 2584-2591
Author(s):  
Aateka Y Barrawaz

New drug discovery and development process is considered much complex process which is time consuming and resources accommodating too. So computer aided drug design are being broadly used to enhance the effectiveness of the drug discovery and development process which ultimately saves time and resources. Various approaches to Computer aided drug design are evaluated to shows potential techniques in accordance with their needs. Two approaches are considered to designing of drug first one is structure-based and second one is Ligand based drug designs. In this review, we are discussing about highly effective and powerful techniques for drug discovery and development as well as various methods of Computer aided drug design like molecular docking at virtual screening for lead identification, QSAR, molecular homology, de-novo design, molecular modeling and optimization. It also elaborate about different software used in Computer aided drug design, different application of Computer aided drug design etc. Major objectives of Computer aided drug design are to commence collaborative foundation of research activities and to discover new chemical entities for novel therapeutics drugs


2019 ◽  
Vol 19 (5) ◽  
pp. 592-598 ◽  
Author(s):  
Rabia Hameed ◽  
Afsar Khan ◽  
Sehroon Khan ◽  
Shagufta Perveen

Background: One of the major goals of computational chemists is to determine and develop the pathways for anticancer drug discovery and development. In recent past, high performance computing systems elicited the desired results with little or no side effects. The aim of the current review is to evaluate the role of computational chemistry in ascertaining kinases as attractive targets for anticancer drug discovery and development. Methods: Research related to computational studies in the field of anticancer drug development is reviewed. Extensive literature on achievements of theorists in this regard has been compiled and presented with special emphasis on kinases being the attractive anticancer drug targets. Results: Different approaches to facilitate anticancer drug discovery include determination of actual targets, multi-targeted drug discovery, ligand-protein inverse docking, virtual screening of drug like compounds, formation of di-nuclear analogs of drugs, drug specific nano-carrier design, kinetic and trapping studies in drug design, multi-target QSAR (Quantitative Structure Activity Relationship) model, targeted co-delivery of anticancer drug and siRNA, formation of stable inclusion complex, determination of mechanism of drug resistance, and designing drug like libraries for the prediction of drug-like compounds. Protein kinases have gained enough popularity as attractive targets for anticancer drugs. These kinases are responsible for uncontrolled and deregulated differentiation, proliferation, and cell signaling of the malignant cells which result in cancer. Conclusion: Interest in developing drugs through computational methods is a growing trend, which saves equally the cost and time. Kinases are the most popular targets among the other for anticancer drugs which demand attention. 3D-QSAR modelling, molecular docking, and other computational approaches have not only identified the target-inhibitor binding interactions for better anticancer drug discovery but are also designing and predicting new inhibitors, which serve as lead for the synthetic preparation of drugs. In light of computational studies made so far in this field, the current review highlights the importance of kinases as attractive targets for anticancer drug discovery and development.


2020 ◽  
Author(s):  
Sanaa Bardaweel

Recently, an outbreak of fatal coronavirus, SARS-CoV-2, has emerged from China and is rapidly spreading worldwide. As the coronavirus pandemic rages, drug discovery and development become even more challenging. Drug repurposing of the antimalarial drug chloroquine and its hydroxylated form had demonstrated apparent effectiveness in the treatment of COVID-19 associated pneumonia in clinical trials. SARS-CoV-2 spike protein shares 31.9% sequence identity with the spike protein presents in the Middle East Respiratory Syndrome Corona Virus (MERS-CoV), which infects cells through the interaction of its spike protein with the DPP4 receptor found on macrophages. Sitagliptin, a DPP4 inhibitor, that is known for its antidiabetic, immunoregulatory, anti-inflammatory, and beneficial cardiometabolic effects has been shown to reverse macrophage responses in MERS-CoV infection and reduce CXCL10 chemokine production in AIDS patients. We suggest that Sitagliptin may be beneficial alternative for the treatment of COVID-19 disease especially in diabetic patients and patients with preexisting cardiovascular conditions who are already at higher risk of COVID-19 infection.


2019 ◽  
Vol 26 (28) ◽  
pp. 5340-5362 ◽  
Author(s):  
Xin Chen ◽  
Giuseppe Gumina ◽  
Kristopher G. Virga

:As a long-term degenerative disorder of the central nervous system that mostly affects older people, Parkinson’s disease is a growing health threat to our ever-aging population. Despite remarkable advances in our understanding of this disease, all therapeutics currently available only act to improve symptoms but cannot stop the disease progression. Therefore, it is essential that more effective drug discovery methods and approaches are developed, validated, and used for the discovery of disease-modifying treatments for Parkinson’s disease. Drug repurposing, also known as drug repositioning, or the process of finding new uses for existing or abandoned pharmaceuticals, has been recognized as a cost-effective and timeefficient way to develop new drugs, being equally promising as de novo drug discovery in the field of neurodegeneration and, more specifically for Parkinson’s disease. The availability of several established libraries of clinical drugs and fast evolvement in disease biology, genomics and bioinformatics has stimulated the momentums of both in silico and activity-based drug repurposing. With the successful clinical introduction of several repurposed drugs for Parkinson’s disease, drug repurposing has now become a robust alternative approach to the discovery and development of novel drugs for this disease. In this review, recent advances in drug repurposing for Parkinson’s disease will be discussed.


2021 ◽  
Vol 14 (3) ◽  
pp. 280
Author(s):  
Rita Rebelo ◽  
Bárbara Polónia ◽  
Lúcio Lara Santos ◽  
M. Helena Vasconcelos ◽  
Cristina P. R. Xavier

Pancreatic ductal adenocarcinoma (PDAC) is considered one of the deadliest tumors worldwide. The diagnosis is often possible only in the latter stages of the disease, with patients already presenting an advanced or metastatic tumor. It is also one of the cancers with poorest prognosis, presenting a five-year survival rate of around 5%. Treatment of PDAC is still a major challenge, with cytotoxic chemotherapy remaining the basis of systemic therapy. However, no major advances have been made recently, and therapeutic options are limited and highly toxic. Thus, novel therapeutic options are urgently needed. Drug repurposing is a strategy for the development of novel treatments using approved or investigational drugs outside the scope of the original clinical indication. Since repurposed drugs have already completed several stages of the drug development process, a broad range of data is already available. Thus, when compared with de novo drug development, drug repurposing is time-efficient, inexpensive and has less risk of failure in future clinical trials. Several repurposing candidates have been investigated in the past years for the treatment of PDAC, as single agents or in combination with conventional chemotherapy. This review gives an overview of the main drugs that have been investigated as repurposing candidates, for the potential treatment of PDAC, in preclinical studies and clinical trials.


Bioanalysis ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 199-201
Author(s):  
Fan Jin ◽  
Daniel Tang ◽  
Kelly Dong ◽  
Dafang Zhong

This article provides an update on new development of China Bioanalysis Forum (CBF). CBF became a member association of Chinese Pharmaceutical Association (CPA) at the end of 2019. The official ceremony and first scientific symposium were held in Shanghai on 18 September 2020. The president of Chinese Pharmaceutical Association and representatives from industry, Contract Research Organization (CRO), hospitals and academic institutes attended the ceremony. Seven experts in the field gave presentations on various topics including Drug Metabolism and Pharmacokinetics (DMPK) and bioanalytical support in drug discovery and development as well as experience in Traditional Chinese Medicine research. With the continuous growth of research and development in China, it is well acknowledged that bioanalysis provides critical support for new innovative medicines and generic drug development in the region.


2021 ◽  
Vol 21 (18) ◽  
pp. 1644-1644
Author(s):  
Lian-Shun Feng

Cancer, a highly heterogeneous disease at intra/inter patient levels, is one of the most serious threats to human health across the world [1, 2]. Notwithstanding the noteworthy advances in its treat-ment, the morbidity and mortality of cancer are projected to grow for a long period, and the global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020 [3]. Accordingly, there is a constant need to explore novel anticancer agents. <p> There are several strategies to discover novel anticancer candidates: (1) new lead hits or candidates from natural resources [4] whichexhibit various biological properties and are a rich source of com-pounds in drug discovery due to the structural and mechanistic diversity, and more than 60% anti-cancer agents can be traced to a natural product; (2) Molecular hybridization is one of the most prom-ising strategies for the discovery of novel anticancer drug candidates since hybrid molecules have the potential to bind multiple targets or to enhance the effect through acting with another bio-target or to counterbalance the side effects caused by the other part of the hybrid [5]; (3) Dimerization is a useful tool to develop novel anticancer drug candidates with enhanced biological activity, reduced side effects and improved pharmacokinetic profiles [6]; (4) Drug repurposing strategy is is an attractive strategy and has been approved, along with non-anticancer macrolide drugs for the treatment of cancer, for anticancer drug discovery since toxicity and pharmacokinetic profiles have already been estab-lished [7]. <p> Heterocycles coumarin, β-lactone, macrolide and triazole are useful anticancer pharmacophores since their derivatives could exert the anticancer activity through diverse mechanisms, inclusive of inhibition of aromatase, carbonic anhydrase, ki-nase, P-glycoprotein, sulfatase, telomerase, vascular endothelial growth factor receptor 2 and tubulin [8-11]. In particular, nat-ural-derived coumarin, β-lactone and macrolide derivatives are important sources of new anticancer lead hits/candidates; mac-rolide repurposed drugs can circumvent high cost and long-time associated with traditional drug discovery strategies; couma-rin, β-lactone and macrolide hybrids as well as bis-triazole compounds have the potential to enhance the anticancer activity, overcome drug resistance, reduce the side effects and improve pharmacokinetic profiles.


Sign in / Sign up

Export Citation Format

Share Document