Methods to Access 2-aminobenzimidazoles of Medicinal Importance

2020 ◽  
Vol 23 (23) ◽  
pp. 2573-2597
Author(s):  
Alejandro Cruz ◽  
Itzia I. Padilla Martínez ◽  
Angel A. Ramos-Organillo

: Benzimidazole (BI) and derivatives are interesting because several of these compounds have been found to have a diversity of biological activities with clinical applications. In view of their importance, the synthesis of BI and its derivatives is still considered as a challenge for synthetic chemists. Examples of compounds used in medicinal chemistry containing BI, as important nucleus, are Astemizole (antihistaminic), Omeprazole (antiulcerative) and Rabendazole (fungicide), some of these compounds have the 2- aminobenzimidazole (2ABI) as base nucleus. The structure of 2ABI derivatives contains a cyclic guanidine moiety, which is interesting because of its free lone pairs, labile hydrogen atoms and planar delocalized structure. The delocalized 10-π electron system and the extension of the electron conjugation with the exocyclic amino group, in 2ABI, making these heterocycles to have amphoteric character. The 2ABI has been used as building blocks for the synthesis of several BI derivatives as medicinally important molecules. On these bases, herein, we present a bibliographic review concerning the recent methodologies used in the synthesis of 2ABIs, including the substituted ones.

2020 ◽  
Vol 74 (4) ◽  
pp. 241-246 ◽  
Author(s):  
Kris Meier ◽  
Sven Bühlmann ◽  
Josep Arús-Pous ◽  
Jean-Louis Reymond

Drug discovery is in constant need of new molecules to develop drugs addressing unmet medical needs. To assess the chemical space available for drug design, our group investigates the generated databases (GDBs) listing all possible organic molecules up to a defined size, the largest of which is GDB-17 featuring 166.4 billion molecules up to 17 non-hydrogen atoms. While known drugs and bioactive compounds are mostly aromatic and planar, the GDBs contain a plethora of non-aromatic 3D-shaped molecules, which are very useful for drug discovery since they generally have more desirable absorption, distribution, metabolism, excretion and toxicity (ADMET) properties. Here we review GDB enumeration methods and the selection and synthesis of GDB molecules as modulators of ion channels. We summarize the constitution of GDB subsets focusing on fragments (FDB17), medicinal chemistry (GDBMedChem) and ChEMBL-like molecules (GDBChEMBL), and the ring system database GDB4c as a rich source of novel 3D-shaped chiral molecules containing quaternary centers, such as the recently reported trinorbornane.


Author(s):  
Adnan Cetin

: The heterocyclic compounds are the building blocks for synthesis of the different biological active compounds in the organic chemistry. Heterocyclic compounds have versatile synthetic applicability and biological activity. Pyrazole carboxylic acid derivatives are significant scaffold structures in heterocyclic compounds due to biologic activities such as antimicrobial, anticancer, inflammatory, antidepressant, antifungal anti-tubercular and antiviral etc. The aim of this mini-review is an overview synthesis of pyrazole carboxylic acid derivatives and their biologic applications. The summarized literature survey presents in detail biological activities of pyrazole carboxylic acid derivatives and their various synthetic methods. This mini-review can be guide to many scientists in medicinal chemistry.


2019 ◽  
Author(s):  
De-Wei Gao ◽  
Yang Gao ◽  
Huiling Shao ◽  
Tian-Zhang Qiao ◽  
Xin Wang ◽  
...  

Enantioenriched <i>α</i>-aminoboronic acids play a unique role in medicinal chemistry and have emerged as privileged pharmacophores in proteasome inhibitors. Additionally, they represent synthetically useful chiral building blocks in organic synthesis. Recently, CuH-catalyzed asymmetric alkene hydrofunctionalization has become a powerful tool to construct stereogenic carbon centers. In contrast, applying CuH cascade catalysis to achieve reductive 1,1-difunctionalization of alkynes remains an important, but largely unaddressed, synthetic challenge. Herein, we report an efficient strategy to synthesize <i>α</i>-aminoboronates <i>via </i>CuH-catalyzed hydroboration/hydroamination cascade of readily available alkynes. Notably, this transformation selectively delivers the desired 1,1-heterodifunctionalized product in favor of alternative homodifunctionalized, 1,2-heterodifunctionalized, or reductively monofunctionalized byproducts, thereby offering rapid access to these privileged scaffolds with high chemo-, regio- and enantioselectivity.<br>


2019 ◽  
Vol 26 (23) ◽  
pp. 4403-4434 ◽  
Author(s):  
Susimaire Pedersoli Mantoani ◽  
Peterson de Andrade ◽  
Talita Perez Cantuaria Chierrito ◽  
Andreza Silva Figueredo ◽  
Ivone Carvalho

Neglected Diseases (NDs) affect million of people, especially the poorest population around the world. Several efforts to an effective treatment have proved insufficient at the moment. In this context, triazole derivatives have shown great relevance in medicinal chemistry due to a wide range of biological activities. This review aims to describe some of the most relevant and recent research focused on 1,2,3- and 1,2,4-triazolebased molecules targeting four expressive NDs: Chagas disease, Malaria, Tuberculosis and Leishmaniasis.


2020 ◽  
Vol 20 (5) ◽  
pp. 342-368 ◽  
Author(s):  
Juliana de Oliveira Carneiro Brum ◽  
Tanos Celmar Costa França ◽  
Steven R. LaPlante ◽  
José Daniel Figueroa Villar

Hydrazones and their derivatives are very important compounds in medicinal chemistry due to their reported biological activity for the treatment of several diseases, like Alzheimer’s, cancer, inflammation, and leishmaniasis. However, most of the investigations on hydrazones available in literature today are directed to the synthesis of these molecules with little discussion available on their biological activities. With the purpose of bringing lights into this issue, we performed a revision of the literature and wrote this review based on some of the most current research reports of hydrazones and derivatives, making it clear that the synthesis of these molecules can lead to new drug prototypes. Our goal is to encourage more studies focused on the synthesis and evaluation of new hydrazones, as a contribution to the development of potential new drugs for the treatment of various diseases.


Author(s):  
Joshua L. Clark ◽  
Rifahath M. Neyyappadath ◽  
Cihang Yu ◽  
Alexandra M. Z. Slawin ◽  
David B. Cordes ◽  
...  

2021 ◽  
Vol 25 ◽  
Author(s):  
Pedro Alves Bezerra Morais ◽  
Carla Santana Francisco ◽  
Heberth de Paula ◽  
Rayssa Ribeiro ◽  
Mariana Alves Eloy ◽  
...  

: Historically, the medicinal chemistry is concerned with the approach of organic chemistry to new drug synthesis. Considering the fruitful collections of new molecular entities, the dedicated efforts for medicinal chemistry are rewarding. Planning and search of new and applicable pharmacologic therapies involve the altruistic nature of the scientists. Since the 19th century, notoriously the application of isolated and characterized plant-derived compounds in modern drug discovery and in various stages of clinical development highlight its viability and significance. Natural products influence a broad range of biological processes, covering transcription, translation, and post-translational modification and being effective modulators of almost all basic cellular processes. The research of new chemical entities through “click chemistry” continuously opens up a map for the remarkable exploration of chemical space in towards leading natural products optimization by structure-activity relationship. Finally, here in this review, we expect to gather a broad knowledge involving triazolic natural products derivatives, synthetic routes, structures, and their biological activities.


1975 ◽  
Vol 28 (8) ◽  
pp. 1681 ◽  
Author(s):  
RS Dickson ◽  
SH Johnson ◽  
ID Rae

The effect of the lanthanide shift reagents, Eu(fod)3 and Pr(fod)3, on the nuclear magnetic resonance spectra of some (η4-cyclopentadienone)(η- cyclopentadienyl)cobalt complexes has been investigated as an aid to structure determination in this series. The lanthanides complex with the lone pairs of the carbonyl group. Pseudocontact shifts are observed for hydrogens attached to each ring and for hydrogen atoms in substituents on the cyclopentadienone. With Eu(fod)3, contact shifts are also observed for the cyclopentadienone ring hydrogens.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4995
Author(s):  
Mohamed Ramadan ◽  
Ashraf A. Aly ◽  
Lamiaa E. Abd El-Haleem ◽  
Mohammed B. Alshammari ◽  
Stefan Bräse

Pyrazoles are considered privileged scaffolds in medicinal chemistry. Previous reviews have discussed the importance of pyrazoles and their biological activities; however, few have dealt with the chemistry and the biology of heteroannulated derivatives. Therefore, we focused our attention on recent topics, up until 2020, for the synthesis of pyrazoles, their heteroannulated derivatives, and their applications as biologically active moieties. Moreover, we focused on traditional procedures used in the synthesis of pyrazoles.


2020 ◽  
Vol 36 (6) ◽  
pp. 1001-1015
Author(s):  
Nadia Ali Ahmed Elkanzi

Nitrogen containing synthetically and biologically important heterocyclic ring system namely pyrimidine possess both biological and pharmacological activities, and defend as aromatic six heterocyclic with 1and 3 nitrogen atom in ring. Preparation of pyrimidine via different methods offer its importance in fields of medicinal chemistry and Chemistry. Pyrimidines and their derivatives act as anti-inflammatory, anti-malaria, anti-tumor, cardiovascular agents, anti-neoplastic, anti-tubercular, anti- HIV, diuretic ,anti-viral, anti-microbial, ,analgesic .This review give light up on biological and pharmacological activities of pyrimidine nucleus.


Sign in / Sign up

Export Citation Format

Share Document