scholarly journals Edaravone May Prevent Ferroptosis in ALS

2020 ◽  
Vol 21 (8) ◽  
pp. 776-780 ◽  
Author(s):  
Snežana Spasić ◽  
Aleksandra Nikolić-Kokić ◽  
Srđan Miletić ◽  
Zorana Oreščanin-Dušić ◽  
Mihajlo B. Spasić ◽  
...  

Radicava™ (Edaravone) was approved the Food and Drug Administration (FDA) as a new treatment for amyotrophic lateral sclerosis (ALS). Edaravone is a synthetic antioxidant that specifically targets oxidative damage interacting with lipid radicals in the cell. In ALS disease the multiple cell types are involved in devastating loss of motor neurons. Mutations and biochemical changes in various cell types jointly contribute to motor neuron death, disease onset, and disease progression. The overall mechanism of neurodegeneration in ALS is still not completely understood. Dying motor neurons have been reported to exhibit features of apoptosis. However, non-apoptotic features of dying motor neurons have also been reported such as ferroptosis. The role of Edaravone in the prevention of ferroptosis in parallel with other therapeutic approaches to ALS therapy is discussed.

2019 ◽  
Vol 244 (11) ◽  
pp. 901-914
Author(s):  
Amy L Strayer ◽  
Cassandra N Dennys-Rivers ◽  
Karina C Ricart ◽  
Narae Bae ◽  
Joseph S Beckman ◽  
...  

Activation of the extracellular ATP ionotropic receptor P2X7 stimulates motor neuron apoptosis, whereas its inhibition in cell and animal models of amyotrophic lateral sclerosis can be protective. These observations suggest that P2X7 receptor activation is relevant to motor neuron disease and that it could be targeted for therapeutic development. Heat shock protein 90 (Hsp90) is an integral regulatory component of the P2X7 receptor complex, antagonizing ligand-induced receptor activation. Here, we show that the repressive activity of Hsp90 on P2X7 receptor activation in primary motor neurons is highly sensitive to inhibition. Primary motor neurons in culture are 100-fold more sensitive to Hsp90 inhibition by geldanamycin than other neuronal populations. Pharmacological inhibition and down-regulation of the P2X7 receptor prevented motor neuron apoptosis triggered by Hsp90 inhibition, which occurred in the absence of extracellular ATP. These observations suggest that inhibition of a seemingly motor neuron specific pool of Hsp90 leads to ligand independent activation of P2X7 receptor and motor neuron death. Downstream of Hsp90 inhibition, P2X7 receptor activated the phosphatase and tensin homolog (TPEN), which in turn suppressed the pro-survival phosphatidyl inositol 3 kinase (PI3K)/Akt pathway, leading to Fas-dependent motor neuron apoptosis. Conditions altering the interaction between P2X7 receptor and Hsp90, such as recruitment of Hsp90 to other subcellular compartments under stress conditions, or nitration following oxidative stress can induce motor neuron death. These findings may have broad implications in neurodegenerative disorders, including amyotrophic lateral sclerosis, in which activation of P2X7 receptor may be involved in both autonomous and non-autonomous motor neurons death. Impact statement Here we show that a motor neuron specific pool of Hsp90 that is highly sensitive to geldanamycin inhibition represses ligand-independent activation of P2X7 receptor and is critical to motor neuron survival. Activation of P2X7 receptor by Hsp90 inhibition triggers motor neuron apoptosis through the activation of PTEN, which in turn inhibits the PI3 kinase/Akt survival pathway. Thus, inhibition of Hsp90 for therapeutic applications may have the unexpected negative consequence of decreasing the activity of trophic pathways in motor neurons. The inhibition of Hsp90 as a therapeutic approach may require the identification of the Hsp90 complexes involved in pathogenic processes and the development of inhibitors selective for these complexes.


2021 ◽  
Vol 22 (3) ◽  
pp. 993
Author(s):  
Hilal Cihankaya ◽  
Carsten Theiss ◽  
Veronika Matschke

Amyotrophic lateral sclerosis (ALS) is one of the most common neurodegenerative diseases, causing degeneration of both upper and lower motor neurons in the central nervous system (CNS). ALS patients suffer from hyperreflexia, spasticity, paralysis and muscle atrophy and typically die due to respiratory failure 1–5 years after disease onset. In addition to the degeneration of motor neurons on the cellular level, ALS has been associated with neuroinflammation, such as microgliosis. Microglial activation in ALS can either be protective or degenerative to the neurons. Among others, mutations in superoxide dismutase 1 (SOD1), chromosome 9 open reading frame 72 (C9Orf72), transactive response DNA binding protein (TDP) 43 and vacuolar protein sorting-associated protein 54 (VPS54) genes have been associated with ALS. Here, we describe the dual role and functionality of microglia in four different in vivo ALS models and search for the lowest common denominator with respect to the role of microglia in the highly heterogeneous disease of ALS.


2013 ◽  
Vol 289 (3) ◽  
pp. 1629-1638 ◽  
Author(s):  
So-ichi Tamai ◽  
Keisuke Imaizumi ◽  
Nobuhiro Kurabayashi ◽  
Minh Dang Nguyen ◽  
Takaya Abe ◽  
...  

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the loss of motor neurons. Here we show that the basic leucine zipper transcription factor NFIL3 (also called E4BP4) confers neuroprotection in models of ALS. NFIL3 is up-regulated in primary neurons challenged with neurotoxic insults and in a mouse model of ALS. Overexpression of NFIL3 attenuates excitotoxic neuronal damage and protects neurons against neurodegeneration in a cell-based ALS model. Conversely, reduction of NFIL3 exacerbates neuronal demise in adverse conditions. Transgenic neuronal expression of NFIL3 in ALS mice delays disease onset and attenuates motor axon and neuron degeneration. These results suggest that NFIL3 plays a neuroprotective role in neurons and constitutes a potential therapeutic target for neurodegeneration.


2015 ◽  
Vol 113 (3) ◽  
pp. 614-619 ◽  
Author(s):  
Elizabeth A. Proctor ◽  
Lanette Fee ◽  
Yazhong Tao ◽  
Rachel L. Redler ◽  
James M. Fay ◽  
...  

Since the linking of mutations in the Cu,Zn superoxide dismutase gene (sod1) to amyotrophic lateral sclerosis (ALS) in 1993, researchers have sought the connection between SOD1 and motor neuron death. Disease-linked mutations tend to destabilize the native dimeric structure of SOD1, and plaques containing misfolded and aggregated SOD1 have been found in the motor neurons of patients with ALS. Despite advances in understanding of ALS disease progression and SOD1 folding and stability, cytotoxic species and mechanisms remain unknown, greatly impeding the search for and design of therapeutic interventions. Here, we definitively link cytotoxicity associated with SOD1 aggregation in ALS to a nonnative trimeric SOD1 species. We develop methodology for the incorporation of low-resolution experimental data into simulations toward the structural modeling of metastable, multidomain aggregation intermediates. We apply this methodology to derive the structure of a SOD1 trimer, which we validate in vitro and in hybridized motor neurons. We show that SOD1 mutants designed to promote trimerization increase cell death. Further, we demonstrate that the cytotoxicity of the designed mutants correlates with trimer stability, providing a direct link between the presence of misfolded oligomers and neuron death. Identification of cytotoxic species is the first and critical step in elucidating the molecular etiology of ALS, and the ability to manipulate formation of these species will provide an avenue for the development of future therapeutic strategies.


Author(s):  
Jannigje Rachel Kok ◽  
Nelma M. Palminha ◽  
Cleide Dos Santos Souza ◽  
Sherif F. El-Khamisy ◽  
Laura Ferraiuolo

AbstractIncreasing evidence supports the involvement of DNA damage in several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Elevated levels of DNA damage are consistently observed in both sporadic and familial forms of ALS and may also play a role in Western Pacific ALS, which is thought to have an environmental cause. The cause of DNA damage in ALS remains unclear but likely differs between genetic subgroups. Repeat expansion in the C9ORF72 gene is the most common genetic cause of familial ALS and responsible for about 10% of sporadic cases. These genetic mutations are known to cause R-loops, thus increasing genomic instability and DNA damage, and generate dipeptide repeat proteins, which have been shown to lead to DNA damage and impairment of the DNA damage response. Similarly, several genes associated with ALS including TARDBP, FUS, NEK1, SQSTM1 and SETX are known to play a role in DNA repair and the DNA damage response, and thus may contribute to neuronal death via these pathways. Another consistent feature present in both sporadic and familial ALS is the ability of astrocytes to induce motor neuron death, although the factors causing this toxicity remain largely unknown. In this review, we summarise the evidence for DNA damage playing a causative or secondary role in the pathogenesis of ALS as well as discuss the possible mechanisms involved in different genetic subtypes with particular focus on the role of astrocytes initiating or perpetuating DNA damage in neurons.


2020 ◽  
Vol 21 (21) ◽  
pp. 7923
Author(s):  
Giada Cipollina ◽  
Arash Davari Serej ◽  
Gianluca Di Nolfi ◽  
Andrea Gazzano ◽  
Andrea Marsala ◽  
...  

Amyotrophic Lateral Sclerosis (ALS) is a complex pathology: (i) the neurodegeneration is chronic and progressive; it starts focally in specific central nervous system (CNS) areas and spreads to different districts; (ii) multiple cell types further than motor neurons (i.e., glial/immune system cells) are actively involved in the disease; (iii) both neurosupportive and neurotoxic neuroinflammatory responses were identified. Microglia cells (a key player of neuroinflammation in the CNS) attracted great interest as potential target cell population that could be modulated to counteract disease progression, at least in preclinical ALS models. However, the heterogeneous/multifaceted microglia cell responses occurring in different CNS districts during the disease represent a hurdle for clinical translation of single-drug therapies. To address this issue, over the past ten years, several studies attempted to dissect the complexity of microglia responses in ALS. In this review, we shall summarize these results highlighting how the heterogeneous signature displayed by ALS microglia reflects not only the extent of neuronal demise in different regions of the CNS, but also variable engagement in the attempts to cope with the neuronal damage. We shall discuss novel avenues opened by the advent of single-cell and spatial transcriptomics technologies, underlining the potential for discovery of novel therapeutic targets, as well as more specific diagnostic/prognostic not-invasive markers of neuroinflammation.


2021 ◽  
Vol 22 (17) ◽  
pp. 9430
Author(s):  
Jing Zhao ◽  
Claire H. Stevens ◽  
Andrew W. Boyd ◽  
Lezanne Ooi ◽  
Perry F. Bartlett

Motor neuron disease (MND) comprises a group of fatal neurodegenerative diseases with no effective cure. As progressive motor neuron cell death is one of pathological characteristics of MND, molecules which protect these cells are attractive therapeutic targets. Accumulating evidence indicates that EphA4 activation is involved in MND pathogenesis, and inhibition of EphA4 improves functional outcomes. However, the underlying mechanism of EphA4’s function in MND is unclear. In this review, we first present results to demonstrate that EphA4 signalling acts directly on motor neurons to cause cell death. We then review the three most likely mechanisms underlying this effect.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Estela Area-Gomez ◽  
D. Larrea ◽  
T. Yun ◽  
Y. Xu ◽  
J. Hupf ◽  
...  

AbstractMotor neuron disorders (MND) include a group of pathologies that affect upper and/or lower motor neurons. Among them, amyotrophic lateral sclerosis (ALS) is characterized by progressive muscle weakness, with fatal outcomes only in a few years after diagnosis. On the other hand, primary lateral sclerosis (PLS), a more benign form of MND that only affects upper motor neurons, results in life-long progressive motor dysfunction. Although the outcomes are quite different, ALS and PLS present with similar symptoms at disease onset, to the degree that both disorders could be considered part of a continuum. These similarities and the lack of reliable biomarkers often result in delays in accurate diagnosis and/or treatment. In the nervous system, lipids exert a wide variety of functions, including roles in cell structure, synaptic transmission, and multiple metabolic processes. Thus, the study of the absolute and relative concentrations of a subset of lipids in human pathology can shed light into these cellular processes and unravel alterations in one or more pathways. In here, we report the lipid composition of longitudinal plasma samples from ALS and PLS patients initially, and after 2 years following enrollment in a clinical study. Our analysis revealed common aspects of these pathologies suggesting that, from the lipidomics point of view, PLS and ALS behave as part of a continuum of motor neuron disorders.


2021 ◽  
pp. 1-15
Author(s):  
Vasily Vorobyov ◽  
Alexander Deev ◽  
Frank Sengpiel ◽  
Vladimir Nebogatikov ◽  
Aleksey A. Ustyugov

Background: Amyotrophic lateral sclerosis (ALS) is characterized by degeneration of motor neurons resulting in muscle atrophy. In contrast to the lower motor neurons, the role of upper (cortical) neurons in ALS is yet unclear. Maturation of locomotor networks is supported by dopaminergic (DA) projections from substantia nigra to the spinal cord and striatum. Objective: To examine the contribution of DA mediation in the striatum-cortex networks in ALS progression. Methods: We studied electroencephalogram (EEG) from striatal putamen (Pt) and primary motor cortex (M1) in ΔFUS(1–359)-transgenic (Tg) mice, a model of ALS. EEG from M1 and Pt were recorded in freely moving young (2-month-old) and older (5-month-old) Tg and non-transgenic (nTg) mice. EEG spectra were analyzed for 30 min before and for 60 min after systemic injection of a DA mimetic, apomorphine (APO), and saline. Results: In young Tg versus nTg mice, baseline EEG spectra in M1 were comparable, whereas in Pt, beta activity in Tg mice was enhanced. In older Tg versus nTg mice, beta dominated in EEG from both M1 and Pt, whereas theta and delta 2 activities were reduced. In younger Tg versus nTg mice, APO increased theta and decreased beta 2 predominantly in M1. In older mice, APO effects in these frequency bands were inversed and accompanied by enhanced delta 2 and attenuated alpha in Tg versus nTg mice. Conclusion: We suggest that revealed EEG modifications in ΔFUS(1–359)-transgenic mice are associated with early alterations in the striatum-cortex interrelations and DA transmission followed by adaptive intracerebral transformations.


Sign in / Sign up

Export Citation Format

Share Document