Advances on Monosaccharides and Oligosaccharides: Structural Modifications and Bioactivities

Author(s):  
Shaochen Li ◽  
Min Lv ◽  
Shaoyong Zhang ◽  
Hui Xu

: Derivatives of monosaccharides and oligosaccharides play the important roles in biological processes. Monosaccharides are the single carbohydrate building blocks, such as glucose, xylose, and fructose. Oligosaccharides are composed of 2–10 monosaccharides including disaccharides and trisaccharides. Moreover, monosaccharides, oligosaccharides and their derivatives are vital molecules with various biological properties including anticancer activity, antiviral activity, insecticidal activity, antimicrobial activity, and antioxidant activity. This review covers a survey of structural modifications, biological activities, and mechanisms of action of monosaccharides, oligosaccharides and their derivatives. Additionally, their structure–activity relationships are also concluded.

Author(s):  
Kong Zhang ◽  
Tianze Li ◽  
Xijie Shan ◽  
Rongfei Lu ◽  
Shaoyong Zhang ◽  
...  

: Cholesterol, a steroid alcohol, was discovered by M.E. Chevreul in 1815. Cholesterol and its derivatives showed a large variety of biological properties such as anticancer activity, anticardiac activity, anti-inflammatory activity, antimicrobial activity, anti-psychotic activity, antioxidant activity, drug-loaded activity, etc. In this mini-review, the advances of structural modification of cholesterol from 2014 to 2020 were summarized. In addition, the bioactivities, mechanisms of action and structure-activity relationships of cholesterol and its related derivatives were involved.


2020 ◽  
Vol 13 (12) ◽  
pp. 479
Author(s):  
Márcio Rodrigues ◽  
Ana Clara Lopes ◽  
Filipa Vaz ◽  
Melanie Filipe ◽  
Gilberto Alves ◽  
...  

Thymus mastichina has the appearance of a semishrub and can be found in jungles and rocky lands of the Iberian Peninsula. This work aimed to review and gather available scientific information on the composition and biological properties of T. mastichina. The main constituents of T. mastichina essential oil are 1,8-cineole (or eucalyptol) and linalool, while the extracts are characterized by the presence of flavonoids, phenolic acids, and terpenes. The essential oil and extracts of T. mastichina have demonstrated a wide diversity of biological activities. They showed antibacterial activity against several bacteria such as Escherichia coli, Proteus mirabilis, Salmonella subsp., methicillin-resistant and methicillin-sensitive Staphylococcus aureus, Listeria monocytogenes EGD, Bacillus cereus, and Pseudomonas, among others, and antifungal activity against Candida spp. and Fusarium spp. Additionally, it has antioxidant activity, which has been evaluated through different methods. Furthermore, other activities have also been studied, such as anticancer, antiviral, insecticidal, repellent, anti-Alzheimer, and anti-inflammatory activity. In conclusion, considering the biological activities reported for the essential oil and extracts of T. mastichina, its potential as a preservative agent could be explored to be used in the food, cosmetic, or pharmaceutical industries.


2020 ◽  
Vol 20 (16) ◽  
pp. 1633-1652
Author(s):  
Meng Hao ◽  
Min Lv ◽  
Hui Xu

Andrographolide, a labdane diterpenoid, is extracted and isolated from the plants of Andrographis paniculata. Andrographolide and its derivatives exhibited a wide range of biological properties, including anticancer activity, antibacterial activity, hepatoprotective activity, antiinflammatory activity, antiviral activity, antimalarial activity, antidiabetic activity, insecticidal activity, etc. As a continuation, this review aims at giving an overview of the recent advances (from 2015 to 2018) of andrographolide and its derivatives with regard to bioactivities, mechanisms of action, structural modifications, and structure-activity relationships.


Cosmetics ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 72 ◽  
Author(s):  
Alessia Bino ◽  
Chiara Vicentini ◽  
Silvia Vertuani ◽  
Ilaria Lampronti ◽  
Roberto Gambari ◽  
...  

Hesperidin is one of the most important natural flavonoids, known for its antioxidant, anti-inflammatory, anti-mutagenic, and anti-hypertensive properties. Despite its various biological activities, hesperidin is rarely used in the dermo-cosmetic field because of its poor solubility in both water and oil phases that makes difficult formulation, distribution and bioavailability through the skin layers. Moreover, hesperidin is still underestimated in skin care products, and literature data on its stability into a topical formulation are not yet available. In this paper we report the synthesis of five different derivatives of hesperidin and their evaluation in terms of antioxidant, antifungal, antiproliferative, and apoptotic effects on human leukemic K562 cells. Preliminary antiproliferative effects were considered since hyper-proliferation is involved in several cutaneous problems particularly in the case of photo-exposition and environmental pollution. Esp4 and Esp5 were found to be more active in inhibiting K562 cell growth than parent hesperidin. Esp3 exhibited different biological properties, i.e., antioxidant activity in the absence of antiproliferative effects.


1991 ◽  
Vol 56 (10) ◽  
pp. 2209-2217 ◽  
Author(s):  
Jan Hlaváček ◽  
Jana Pírková ◽  
Jan Pospíšek ◽  
Jiřina Slaninová ◽  
Lenka Maletínská

Using solution or solid-phase synthesis we prepared the cholecystokinin fragment Boc-CCK-7 (Boc-Tyr-(SO3-.Na+)-Met-Gly-Trp-Met-Asp-PheNH2) and its four analogues in which the methionine moiety (Met) in the carboxy-terminal part is replaced by tert-leucine (Tle) or neopentylglycine (Neo) residue or D-enantiomers of these non-coded amino acids. These structural modifications led to reduction of the studied biological activities (gall bladder contraction, anorectic activity, analgetic and sedation activity) of all prepared analogues except Boc[Neo5]-CCK-7 which, being less analgetically active, retains full gall bladder and sedation activity of CCK-8. Moreover, its anorectic activity is substantially higher (400%). This analogue is very interesting particularly for its selectively increased (4x) anorectic effect compared with that of CCK-8.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2669
Author(s):  
Michaela Barkociová ◽  
Jaroslav Tóth ◽  
Katarzyna Sutor ◽  
Natalia Drobnicka ◽  
Slawomir Wybraniec ◽  
...  

Epiphyllum, Hylocereus, and Opuntia plants belong to the Cactaceae family. They are mostly known as ornamental plants but also for their edible fruits, which can potentially be sources of betalains, such as betanin, a natural pigment used in the food industry, e.g., under the European label code E 162. The aim of this work was the identification of betalains (using LC-MS/MS), evaluation of total betalain content (spectrophotometrically), analysis of functional groups (using FT-IR), evaluation of antioxidant activity (using DPPH, ABTS, FRAP, DCFH-DA, and reducing power methods) and evaluation of antimicrobial activity (S. aureus, E. coli, and C. albicans) in fruits of Epiphyllum, Hylocereus, and Opuntia taxa. A total of 20 betalains were identified in the studied Cactaceae fruits. The Epiphyllum pink hybrid had the highest values of total betalains amongst all samples. The highest antioxidant activity was observed in the Epiphyllum pink hybrid, in Opuntia zacuapanensis and O. humifusa fruits. The antimicrobial activity assay showed that cacti fruits were not able to effectively inhibit the growth of E. coli, S. aureus, or C. albicans. Our results prove that these fruits are good sources of natural pigments—betalains. They do not contain toxic compounds in significant amounts and they exhibit antioxidant activity.


2021 ◽  
Author(s):  
◽  
Taitusi Taufa

<p>Over the course of this study, various species of Tongan marine sponges were investigated using an NMR-based screening method and has resulted in the discovery of three new sesterterpenes and 11 known compounds. Examination of the sponge Fascaplysinopsis sp. resulted in the isolation of two novel sesterterpenes, isoluffariellolide (46) and 1-O-methylisoluffariellolide (47). Compounds 46 and 47 share the same backbone pattern as the known luffariellolide (45) and 25-Omethylluffariellolide (107) respectively, and differ only in the substitution pattern of the butenolide rings. Isoluffariellolide (46) was found to be approximately six times less cytotoxic than 1-O-methylisoluffariellolide (47). Interestingly, these results suggested that the 1-O-methyl group in compound 47 plays an important role in the cytotoxicity of the compound. Secothorectolide (49), a new ring-opened and geometric isomer of the known compound thorectolide (48), was obtained from a sponge of the order Dictyoceratida. This ring closure and opening relationship was also observed between manoalide (109) and secomanoalide (110), as well as luffariellins A (141) and B (142). Despite the different carbon skeleton, the functional groups in 141 and 142 are similar with those in 109 and 110, respectively, and not surprisingly the biological properties are almost identical. The biological activities of compounds 48 and 49 were almost the same, which would give an insight into the structure-activity relationship (SAR) between these types of compounds.</p>


2021 ◽  
Author(s):  
◽  
Taitusi Taufa

<p>Over the course of this study, various species of Tongan marine sponges were investigated using an NMR-based screening method and has resulted in the discovery of three new sesterterpenes and 11 known compounds. Examination of the sponge Fascaplysinopsis sp. resulted in the isolation of two novel sesterterpenes, isoluffariellolide (46) and 1-O-methylisoluffariellolide (47). Compounds 46 and 47 share the same backbone pattern as the known luffariellolide (45) and 25-Omethylluffariellolide (107) respectively, and differ only in the substitution pattern of the butenolide rings. Isoluffariellolide (46) was found to be approximately six times less cytotoxic than 1-O-methylisoluffariellolide (47). Interestingly, these results suggested that the 1-O-methyl group in compound 47 plays an important role in the cytotoxicity of the compound. Secothorectolide (49), a new ring-opened and geometric isomer of the known compound thorectolide (48), was obtained from a sponge of the order Dictyoceratida. This ring closure and opening relationship was also observed between manoalide (109) and secomanoalide (110), as well as luffariellins A (141) and B (142). Despite the different carbon skeleton, the functional groups in 141 and 142 are similar with those in 109 and 110, respectively, and not surprisingly the biological properties are almost identical. The biological activities of compounds 48 and 49 were almost the same, which would give an insight into the structure-activity relationship (SAR) between these types of compounds.</p>


Author(s):  
Shaoquan Lin ◽  
Han Liu ◽  
Esben B. Svenningsen ◽  
Christine Pedersen ◽  
Peter Nørby ◽  
...  

The polyether ionophores are complex natural products capable of transporting cations across biological membranes. Many family members possess highly potent antimicrobial activity and a few selected compounds have ability to target particularly aggressive cancer cells. Despite these interesting perspectives, a detailed understanding of the cellular mode-of-action of polyether ionophores is generally lacking. In principle, broad mapping of structure-activity relationships across several biological activities could provide mechanistic insights as well as identification of lead structures but access to structural diversity within the overall class is synthetically very challenging. In this manuscript, we demonstrate that novel polyether ionophores can be constructed by recycling components of highly abundant polyethers. We provide the first examples of synthetically incorporating halogen-functionalized tetronic acids as cation-binding groups into polyether ionophores and we identify analogs with strong anti-bacterial activity and minimal effects on mammalian cells.


In this study, intelligent food packaging in the forms of film and coating were developed based on starch, chitosan and curcumin extracted from turmeric. Solution casting method was applied to develop the film. Both of the film and coating were evaluated and compared by their chemical, physical and biological properties. The film was evaluated in terms of tensile strength measurement, FTIR spectroscopy, antioxidant activity and antimicrobial activity as well as color difference parameters after application on the strawberry. The results obtained showed that the film has a tensile strength of 1.37 MPa, elongation at break of 18.9%, antioxidant activity of 95.65% and high antimicrobial activity as the film had successfully delayed the formation of mould on the strawberry after 5 days of storage. In addition, the stability of both film and coating were evaluated based on their applications on strawberries at two different conditions which are at room temperature and chiller temperature during 5 days storage to identify their potential use as intelligent food packaging. After 5 days, it was found that the film at room temperature had been partially degraded and the coating had caused colour degradation and texture deterioration of the strawberry. In contrast, the film and coating stored at chiller temperature remained the same in terms of physical structure and able to monitor and extend the shelf life of the strawberry. For the evaluation of the film as pH sensing film, the colour of the film changed after 5 days from 53.46 to 48.92 for L*, 26.01 to 22.68 for a* and 42.49 to 44.65 for b* at chiller temperature, while at room temperature, the values of L* changed from 53.96 to 48.96, 25.54 to 20.36 for a* and 46.34 to 44.10 for b*. These showed that the film was able to monitor the freshness of the strawberry by changing its colour in respond to pH changes of the strawberry. The results obtained revealed that both of the film and coating have a greater stability at chiller temperature as compared to storage at room temperature and both have a strong antioxidant activity and strong antimicrobial activity that they delayed the spoilage of the strawberries. Therefore, the film and coating based on starch, chitosan and curcumin can be used to monitor freshness of refrigerated food and have the potential to be used as intelligent food packaging


Sign in / Sign up

Export Citation Format

Share Document