Transfersomes: the ultra-deformable carrier system for non-invasive delivery of drug

2020 ◽  
Vol 17 ◽  
Author(s):  
Ritika Gupta ◽  
Amrish Kumar

: Vesicular systems have many advantages like prolong the existence of the drug in the systemic circulation, minimizes the undesirable side-effects, reaches the active moieties to its target sites using the carriers. But the main drawback related to transdermal delivery is to cross stratum corneum which can be overcome by the utilization of novel carrier systems e.g. transfersomes which are ultra-deformable carrier system composed of phospholipid (phosphatidylcholine) and edge activators (surfactants). Edge activators are responsible for the flexibility of the bilayer membranes of transfersomes. Different edge activators utilized for transfersomes include tween, span, bile salts (sodium cholate and sodium deoxycholate) and dipotassium glycyrrhizinate. These activators decrease the interfacial tension therefore increases the deformability of carrier system. Transfersomes can encapsulate both hydrophilic and hydrophobic drugs into a vesicular structure which consists of one or more concentric bilayers. Due to the elastic nature of transfersomes, they can easily cross the natural physiological barriers i.e., skin and deliver the drug to its active site. The main benefit of using transfersomes as a carrier is the delivery of macromolecules through the skin by non-invasive route therefore increasing the patient’s compliance. The transfersomal formulations can be used in the treatment of ocular diseases, alopecia, vulvovaginal candidiasis, osteoporosis, apotic dermatitis, tumor, leishmaniasis. It is also used in the delivery of growth hormones, anaesthesia, insulin, proteins, and herbal drugs. This review also focuses on the patents and clinical studies for various transfersomal products.

1990 ◽  
Vol 112 (1) ◽  
pp. 75-79 ◽  
Author(s):  
O. Lichtenstein ◽  
U. Dinnar

This study presents a simulated analysis of Phased Compression Cardiac Assist Device (PCCAD) and evaluation of its applicability as a non-invasive temporary assist for a failing heart. The new technique is based on the chest pump mechanism for blood flow augmentation during external massage by phased compression of the abdominal and thoracic cavities. A semi-closed hydraulic system to simulate the systemic circulation was constructed; the system includes a left ventricle which functions according to the Starling principle and a pneumatic system which controls the pressures applied to the thoracic and abdominal cavities, in complete synchronization with the beating normal or failing heart. The possibility of manipulating the three pumps in series (venous, heart, and arterial) has been checked, and the principal parameters which effect the efficiency of the PCCAD were evaluated. This in-vitro analysis shows the high potential of a non-invasive temporary cardiac assist device. It points to the necessary measures one has to take in order to achieve good synchronization and to interfere externally with the augmentation of cardiac output or with the augmentation of root aortic pressure.


Author(s):  
Lu Wang ◽  
Sardar Ansari ◽  
Kevin R. Ward ◽  
Kayvan Najarian ◽  
Kenn R. Oldham

Autoregulatory dynamics of the cardiovascular system play an important role in maintaining oxygenated blood transportation throughout the human body. In this work, a feedback dynamics model of the cardiovascular system with respect to heartrate and peripheral vascular resistance effects on longer-term blood pressure changes in the systemic circulation is presented. The model is identified from data taken from a swine test subject, instrumented in part with a wearable, non-invasive sensor for estimating peripheral arterial radius. Comparative simulations for the open and close loop model highlight significantly changed hemodynamics after hemorrhage.


1981 ◽  
Vol 36 (5-6) ◽  
pp. 400-406 ◽  
Author(s):  
Toshihisa Ohshima ◽  
Gerhart Drews

Abstract Chemotrophically grown cells of Rhodopseudomonas capsulata contain at least three different pyridine nucleotide dehydrogenases, i) a soluble, found in the supernatant (144000 × g) of cell free extracts, NADH-dependent, ii) a mem brane-bound, NADH-dependent, and iii) a soluble, found in the supernatant N AD PH dependent. The membrane-bound NADH dehydrogenase (E.C. 1.6.99.3) has been solubilized by sodium deoxycholate treatm ent of m em branes and purified 75 fold by column chrom atography on Sephadex G-150 and DEAE cellulose in the presence of sodium cholate. The native enzyme has an apparent molecular mass (Mr) of 97 000, containing polypeptides of Mr of about 15 000. The pH optim um was at 7.5. The enzyme was specific for NADH. The Michaelis constant for NADH and DCIP were 4.0 and 63 μm, respectively. The enzyme was inactivated by FMN, riboflavin and NADH. In contrast, the soluble NADH-dehydrogenase (i) was activated by FMN.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1783 ◽  
Author(s):  
Yusheng Qian ◽  
Xinyu Zhou ◽  
Jing He ◽  
Chuncai Zhou

A novel series of amphiphilic mimicking antimicrobial peptide copolymers PCL16-b-Kn can assemble in water to form uniform vesicles. Transmission electron microscopy was used to observe the vesicular structure of the nanoparticles, and dynamic light scattering revealed their uniform size and narrow dispersion. Critical vesiculation concentrations were also tested, revealing that these vesicles can exist at low concentrations. Furthermore, in vitro and intracellular drug release of doxorubicin(DOX)-vesicles were conducted. These vesicles could encapsulate DOX and achieve efficient intracellular drug release. Overall, these copolymer vesicles exhibit potential application value as multifunctional drug-carrier systems with antibacterial capability in cancer therapy.


1995 ◽  
Vol 305 (1) ◽  
pp. 321-328 ◽  
Author(s):  
X Bossuyt ◽  
N Blanckaert

We propose the existence in rat liver endoplasmic reticulum (ER) of two asymmetric carrier systems. One system couples UDP-N-acetylglucosamine (UDPGlcNAc) transport to UDP-glucuronic acid (UDPGlcA) transport. When UDPGlcNAc was presented at the cytosolic side of the ER, it then acted as a weak inhibitor of UDPGlcA uptake. By contrast, UDPGlcNAc produced a forceful trans-stimulation of microsomal UDPGlcA uptake when it was present within the lumen of the ER. Likewise, cytosolic UDPGlcA strongly trans-stimulated efflux of intravesicular UDPGlcNAc, whereas cytosolic UDPGlcNAc was ineffective in trans-stimulating efflux of UDPGlcA. A second asymmetric carrier system couples UDPGlcNAc transport to UMP transport. Microsomal UDPGlcNAc influx was markedly stimulated by UMP present inside the microsomes. Such stimulation was only apparent when microsomes had been preincubated and thereby preloaded with UMP, indicating that UMP exerted its effect on UDPGlcNAc uptake by trans-stimulation from the lumenal side of the ER membrane. Contrariwise, extravesicular UMP only minimally trans-stimulated efflux of intramicrosomal UDPGlcNAc. It is widely accepted that UDPGlcNAc acts as a physiological activator of hepatic glucuronidation, but the mechanism of this effect has remained elusive. Based on our findings, we propose a model in which the interaction of two asymmetric transport pathways, i.e. UDPGlcA influx coupled to UDPGlcNAc efflux and UDPGlcNAc influx coupled to UMP efflux, combined with intravesicular metabolism of UDPGlcA, forms a mechanism that leads to stimulation of glucuronidation by UDPGlcNAc.


Sign in / Sign up

Export Citation Format

Share Document