Insight into the Epigenetics of Alzheimer's Disease: A Computational Study from Human Interactome

2016 ◽  
Vol 13 (12) ◽  
pp. 1385-1396 ◽  
Author(s):  
Paulami Chatterjee ◽  
Debjani Roy
2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S338-S338
Author(s):  
Akihiko Shiino ◽  
Toshiyuki Watanabe ◽  
Ichiro Akiguchi ◽  
Shigehiro Morikawa ◽  
Toshiro Inubushi ◽  
...  

Endocrinology ◽  
2010 ◽  
Vol 151 (6) ◽  
pp. 2713-2722 ◽  
Author(s):  
Jenna C. Carroll ◽  
Emily R. Rosario ◽  
Angela Villamagna ◽  
Christian J. Pike

Depletion of estrogens and progesterone at menopause has been linked to an increased risk for the development of Alzheimer’s disease (AD) in women. A currently controversial literature indicates that although treatment of postmenopausal women with hormone therapy (HT) may reduce the risk of AD, several parameters of HT may limit its potential efficacy and perhaps, even exacerbate AD risk. One such parameter is continuous vs. cyclic delivery of the progestogen component of HT. Recent experimental evidence suggests that continuous progesterone can attenuate neural actions of estradiol (E2). In the present study, we compared the effects of continuous and cyclic progesterone treatment in the presence and absence of E2 in ovariectomized 3×Tg-AD mice, a transgenic mouse model of AD. We found that ovariectomy-induced hormone depletion increases AD-like pathology in female 3×Tg-AD mice, including accumulation of β-amyloid, tau hyperphosphorylation, and impaired hippocampal-dependent behavior. E2 treatment alone prevents the increases in pathology. Continuous progesterone did not affect β-amyloid levels when delivered alone but blocked the Aβ-lowering action of E2. In contrast, cyclic progesterone significantly reduced β-amyloid levels by itself and enhanced rather than inhibited the E2 effects. These results provide new insight into the neural interactions between E2 and progesterone that may prove valuable in optimizing HT regimens in postmenopausal women.


Nature ◽  
2017 ◽  
Vol 552 (7685) ◽  
pp. 342-343 ◽  
Author(s):  
Richard M. Ransohoff

Marine Drugs ◽  
2018 ◽  
Vol 16 (10) ◽  
pp. 386 ◽  
Author(s):  
Laura Llorach-Pares ◽  
Alfons Nonell-Canals ◽  
Conxita Avila ◽  
Melchor Sanchez-Martinez

Alzheimer’s disease (AD) is becoming one of the most disturbing health and socioeconomic problems nowadays, as it is a neurodegenerative pathology with no treatment, which is expected to grow further due to population ageing. Actual treatments for AD produce only a modest amelioration of symptoms, although there is a constant ongoing research of new therapeutic strategies oriented to improve the amelioration of the symptoms, and even to completely cure the disease. A principal feature of AD is the presence of neurofibrillary tangles (NFT) induced by the aberrant phosphorylation of the microtubule-associated protein tau in the brains of affected individuals. Glycogen synthetase kinase-3 beta (GSK3β), casein kinase 1 delta (CK1δ), dual-specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A) and dual-specificity kinase cdc2-like kinase 1 (CLK1) have been identified as the principal proteins involved in this process. Due to this, the inhibition of these kinases has been proposed as a plausible therapeutic strategy to fight AD. In this study, we tested in silico the inhibitory activity of different marine natural compounds, as well as newly-designed molecules from some of them, over the mentioned protein kinases, finding some new possible inhibitors with potential therapeutic application.


Life Sciences ◽  
2022 ◽  
pp. 120299
Author(s):  
Mehdi Sanati ◽  
Samaneh Aminyavari ◽  
Amir R. Afshari ◽  
Amirhossein Sahebkar

2019 ◽  
Vol 15 ◽  
pp. P1033-P1034
Author(s):  
Keith R. Morneau ◽  
Brian G. Sansoucy ◽  
Robert J. Lagier ◽  
Charles M. Rowland ◽  
Torey Neusch ◽  
...  

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Dominik Röhr ◽  
Baayla D. C. Boon ◽  
Martin Schuler ◽  
Kristin Kremer ◽  
Jeroen J. M. Hoozemans ◽  
...  

AbstractThe neuropathology of Alzheimer’s disease (AD) is characterized by hyperphosphorylated tau neurofibrillary tangles (NFTs) and amyloid-beta (Aβ) plaques. Aβ plaques are hypothesized to follow a development sequence starting with diffuse plaques, which evolve into more compact plaques and finally mature into the classic cored plaque type. A better molecular understanding of Aβ pathology is crucial, as the role of Aβ plaques in AD pathogenesis is under debate. Here, we studied the deposition and fibrillation of Aβ in different plaque types with label-free infrared and Raman imaging. Fourier-transform infrared (FTIR) and Raman imaging was performed on native snap-frozen brain tissue sections from AD cases and non-demented control cases. Subsequently, the scanned tissue was stained against Aβ and annotated for the different plaque types by an AD neuropathology expert. In total, 160 plaques (68 diffuse, 32 compact, and 60 classic cored plaques) were imaged with FTIR and the results of selected plaques were verified with Raman imaging. In diffuse plaques, we detect evidence of short antiparallel β-sheets, suggesting the presence of Aβ oligomers. Aβ fibrillation significantly increases alongside the proposed plaque development sequence. In classic cored plaques, we spatially resolve cores containing predominantly large parallel β-sheets, indicating Aβ fibrils. Combining label-free vibrational imaging and immunohistochemistry on brain tissue samples of AD and non-demented cases provides novel insight into the spatial distribution of the Aβ conformations in different plaque types. This way, we reconstruct the development process of Aβ plaques in human brain tissue, provide insight into Aβ fibrillation in the brain, and support the plaque development hypothesis.


2020 ◽  
Vol 9 (6) ◽  
pp. 1713 ◽  
Author(s):  
Gabriela Dumitrita Stanciu ◽  
Veronica Bild ◽  
Daniela Carmen Ababei ◽  
Razvan Nicolae Rusu ◽  
Alina Cobzaru ◽  
...  

Diabetes and Alzheimer’s disease are two highly prevalent diseases among the aging population and have become major public health concerns in the 21st century, with a significant risk to each other. Both of these diseases are increasingly recognized to be multifactorial conditions. The terms “diabetes type 3” or “brain diabetes” have been proposed in recent years to provide a complete view of the potential common pathogenic mechanisms between these diseases. While insulin resistance or deficiency remains the salient hallmarks of diabetes, cognitive decline and non-cognitive abnormalities such as impairments in visuospatial function, attention, cognitive flexibility, and psychomotor speed are also present. Furthermore, amyloid aggregation and deposition may also be drivers for diabetes pathology. Here, we offer a brief appraisal of social impact and economic burden of these chronic diseases and provide insight into amyloidogenesis through considering recent advances of amyloid-β aggregates on diabetes pathology and islet amyloid polypeptide on Alzheimer’s disease. Exploring the detailed knowledge of molecular interaction between these two amyloidogenic proteins opens new opportunities for therapies and biomarker development.


FEBS Letters ◽  
2007 ◽  
Vol 581 (30) ◽  
pp. 5872-5878 ◽  
Author(s):  
Jozef Sevcik ◽  
Rostislav Skrabana ◽  
Radovan Dvorsky ◽  
Natalia Csokova ◽  
Khalid Iqbal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document