Interactions between Personality, Depression, Anxiety and Cognition to Understand Early Stage of Alzheimer’s Disease

2020 ◽  
Vol 20 (9) ◽  
pp. 782-791 ◽  
Author(s):  
Valérie Zufferey ◽  
Armin von Gunten ◽  
Ferath Kherif

The multifaceted nature of Alzheimer’s disease (AD) and Mild cognitive impairment (MCI) can lead to wide inter-individual differences in disease manifestation in terms of brain pathology and cognition. The lack of understanding of phenotypic diversity in AD arises from a difficulty in understanding the integration of different levels of network organization (i.e. genes, neurons, synapses, anatomical regions, functions) and in inclusion of other information such as neuropsychiatric characteristics, personal history, information regarding general health or subjective cognitive complaints in a coherent model. Non-cognitive factors, such as personality traits and behavioral and psychiatric symptoms, can be informative markers of early disease stage. It is known that personality can affect cognition and behavioral symptoms. The aim of the paper is to review the different types of interactions existing between personality, depression/anxiety, and cognition and cognitive disorders at behavioral and brain/genetic levels.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Shan-Shan Wang ◽  
Zi-Kai Liu ◽  
Jing-Jing Liu ◽  
Qing Cheng ◽  
Yan-Xia Wang ◽  
...  

Abstract Background Discovery of early-stage biomarkers is a long-sought goal of Alzheimer’s disease (AD) diagnosis. Age is the greatest risk factor for most AD and accumulating evidence suggests that age-dependent elevation of asparaginyl endopeptidase (AEP) in the brain may represent a new biological marker for predicting AD. However, this speculation remains to be explored with an appropriate assay method because mammalian AEP exists in many organs and the level of AEP in body fluid isn’t proportional to its concentration in brain parenchyma. To this end, we here modified gold nanoparticle (AuNPs) into an AEP-responsive imaging probe and choose transgenic APPswe/PS1dE9 (APP/PS1) mice as an animal model of AD. Our aim is to determine whether imaging of brain AEP can be used to predict AD pathology. Results This AEP-responsive imaging probe AuNPs-Cy5.5-A&C consisted of two particles, AuNPs-Cy5.5-AK and AuNPs-Cy5.5-CABT, which were respectively modified with Ala–Ala–Asn–Cys–Lys (AK) and 2-cyano-6-aminobenzothiazole (CABT). We showed that AuNPs-Cy5.5-A&C could be selectively activated by AEP to aggregate and emit strong fluorescence. Moreover, AuNPs-Cy5.5-A&C displayed a general applicability in various cell lines and its florescence intensity correlated well with AEP activity in these cells. In the brain of APP/PS1 transgenic mice , AEP activity was increased at an early disease stage of AD that precedes formation of senile plaques and cognitive impairment. Pharmacological inhibition of AEP with δ-secretase inhibitor 11 (10 mg kg−1, p.o.) reduced production of β-amyloid (Aβ) and ameliorated memory loss. Therefore, elevation of AEP is an early sign of AD onset. Finally, we showed that live animal imaging with this AEP-responsive probe could monitor the up-regulated AEP in the brain of APP/PS1 mice. Conclusions The current work provided a proof of concept that assessment of brain AEP activity by in vivo imaging assay is a potential biomarker for early diagnosis of AD. Graphical abstract


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Xi Mei ◽  
Mengxiang Yang ◽  
Lina Zhu ◽  
Qi Zhou ◽  
Xingxing Li ◽  
...  

Objectives. Retina abnormalities are related to cognitive disorders in patients with Alzheimer’s disease (AD). Retinal amyloid beta (Aβ) can be labeled by curcumin. We measured Aβ content in the cerebrum and retina of APPswe/PS1dE9 (APP) transgenic mice with early age to investigate the correlation between cerebrum and retina. Methods. APP mice and age-matched wild-type mice were investigated every month from age 2 months to 6 months to assess changes in Aβ content in the retina and cerebrum. At the beginning of each month, mice were fed a curcumin diet (50 mg/kg/day) for 7 consecutive days. The Aβ levels in the retina and cerebrum were measured by ELISAs. Correlations were identified between retinal and cerebral Aβ contents using Pearson’s correlation. Results. In the absence of curcumin, there was a significant correlation between Aβ contents in the retina and cerebrum of APP mice (r=0.7291, P=0.0014). With increasing age, Aβ-mediated degenerative change in the cerebrum (P<0.001 in 5 months) and retina (P<0.01 in 5 months) increased significantly. The inhibitory effect of curcumin on the Aβ level was significant in the cerebrum (P<0.001) and retina (P<0.01) of older APP mice in the early stage of life. Conclusion. We observed a significant correlation between the Aβ content in the retina and Aβ content in the cerebrum of APP mice. Our data suggest an appropriate time to measure retinal Aβ. Although curcumin can label Aβ in the retina, it also suppresses Aβ levels and weakens the degree of correlation between Aβ in cerebrum and retina tissues.


2021 ◽  
Author(s):  
Dong Won Kim ◽  
Kevin Tu ◽  
Alice Wei ◽  
Ashley Lau ◽  
Anabel Gonzalez-Gil ◽  
...  

It is unknown whether specific microglia are selectively induced by amyloid-β(Aβ), tau pathologies, or both in combination. To address this, we use single-cell RNA-sequencing to profile mice bearing both Aβ and tau pathologies during Alzheimer's disease (AD). We identify novel microglia subtypes induced in a disease stage-specific manner. We show that during early-stage disease, interferon signaling induces a subtype of microglia termed EADAM. During late-stage disease, a second microglia subtype termed LADAM is detected. While EADAM and LADAM-like microglia are observed in other neurodegenerative models, the magnitude and composition of subtype markers are distinct from microglia observed with AD-like pathology. The pattern of EADAM- and LADAM-associated gene expression is observed in microglia from human AD, during the early and late stages of disease, respectively. Furthermore, we observe that several siglec genes are selectively expressed in either EADAM or LADAM. Siglecg is expressed in white-matter-associated LADAM, and expression of the human orthologue of Siglecg is progressively elevated in AD-stage-dependent manner but not shown in non-AD tauopathy. Our findings imply that both Aβ and tau pathologies are required for disease stage-specific induction of EADAM and LADAM.


2020 ◽  
Vol 17 (1) ◽  
pp. 93-103 ◽  
Author(s):  
Jing Ma ◽  
Yuan Gao ◽  
Wei Tang ◽  
Wei Huang ◽  
Yong Tang

Background: Studies have suggested that cognitive impairment in Alzheimer’s disease (AD) is associated with dendritic spine loss, especially in the hippocampus. Fluoxetine (FLX) has been shown to improve cognition in the early stage of AD and to be associated with diminishing synapse degeneration in the hippocampus. However, little is known about whether FLX affects the pathogenesis of AD in the middle-tolate stage and whether its effects are correlated with the amelioration of hippocampal dendritic dysfunction. Previously, it has been observed that FLX improves the spatial learning ability of middleaged APP/PS1 mice. Objective: In the present study, we further characterized the impact of FLX on dendritic spines in the hippocampus of middle-aged APP/PS1 mice. Results: It has been found that the numbers of dendritic spines in dentate gyrus (DG), CA1 and CA2/3 of hippocampus were significantly increased by FLX. Meanwhile, FLX effectively attenuated hyperphosphorylation of tau at Ser396 and elevated protein levels of postsynaptic density 95 (PSD-95) and synapsin-1 (SYN-1) in the hippocampus. Conclusion: These results indicated that the enhanced learning ability observed in FLX-treated middle-aged APP/PS1 mice might be associated with remarkable mitigation of hippocampal dendritic spine pathology by FLX and suggested that FLX might be explored as a new strategy for therapy of AD in the middle-to-late stage.


2020 ◽  
Vol 17 (1) ◽  
pp. 29-43 ◽  
Author(s):  
Patrick Süß ◽  
Johannes C.M. Schlachetzki

: Alzheimer’s Disease (AD) is the most frequent neurodegenerative disorder. Although proteinaceous aggregates of extracellular Amyloid-β (Aβ) and intracellular hyperphosphorylated microtubule- associated tau have long been identified as characteristic neuropathological hallmarks of AD, a disease- modifying therapy against these targets has not been successful. An emerging concept is that microglia, the innate immune cells of the brain, are major players in AD pathogenesis. Microglia are longlived tissue-resident professional phagocytes that survey and rapidly respond to changes in their microenvironment. Subpopulations of microglia cluster around Aβ plaques and adopt a transcriptomic signature specifically linked to neurodegeneration. A plethora of molecules and pathways associated with microglia function and dysfunction has been identified as important players in mediating neurodegeneration. However, whether microglia exert either beneficial or detrimental effects in AD pathology may depend on the disease stage. : In this review, we summarize the current knowledge about the stage-dependent role of microglia in AD, including recent insights from genetic and gene expression profiling studies as well as novel imaging techniques focusing on microglia in human AD pathology and AD mouse models.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hao Hu ◽  
Lan Tan ◽  
Yan-Lin Bi ◽  
Wei Xu ◽  
Lin Tan ◽  
...  

AbstractThe bridging integrator 1 (BIN1) gene is the second most important susceptibility gene for late-onset Alzheimer’s disease (LOAD) after apolipoprotein E (APOE) gene. To explore whether the BIN1 methylation in peripheral blood changed in the early stage of LOAD, we included 814 participants (484 cognitively normal participants [CN] and 330 participants with subjective cognitive decline [SCD]) from the Chinese Alzheimer’s Biomarker and LifestylE (CABLE) database. Then we tested associations of methylation of BIN1 promoter in peripheral blood with the susceptibility for preclinical AD or early changes of cerebrospinal fluid (CSF) AD-related biomarkers. Results showed that SCD participants with significant AD biological characteristics had lower methylation levels of BIN1 promoter, even after correcting for covariates. Hypomethylation of BIN1 promoter were associated with decreased CSF Aβ42 (p = 0.0008), as well as increased p-tau/Aβ42 (p = 0.0001) and t-tau/Aβ42 (p < 0.0001) in total participants. Subgroup analysis showed that the above associations only remained in the SCD subgroup. In addition, hypomethylation of BIN1 promoter was also accompanied by increased CSF p-tau (p = 0.0028) and t-tau (p = 0.0130) in the SCD subgroup, which was independent of CSF Aβ42. Finally, above associations were still significant after correcting single nucleotide polymorphic sites (SNPs) and interaction of APOE ɛ4 status. Our study is the first to find a robust association between hypomethylation of BIN1 promoter in peripheral blood and preclinical AD. This provides new evidence for the involvement of BIN1 in AD, and may contribute to the discovery of new therapeutic targets for AD.


Sign in / Sign up

Export Citation Format

Share Document