Identification of Potential Inhibitors for Targets Involved in Dengue Fever

2020 ◽  
Vol 20 (19) ◽  
pp. 1742-1760
Author(s):  
Anusuya Shanmugam ◽  
Chandrasekaran Ramakrishnan ◽  
Devadasan Velmurugan ◽  
M. Michael Gromiha

Lethality due to dengue infection is a global threat. Nearly 400 million people are affected every year, which approximately costs 500 million dollars for surveillance and vector control itself. Many investigations on the structure-function relationship of proteins expressed by the dengue virus are being made for more than a decade and had come up with many reports on small molecule drug discovery. In this review, we present a detailed note on viral proteins and their functions as well as the inhibitors discovered/designed so far using experimental and computational methods. Further, the phytoconstituents from medicinal plants, specifically the extract of the papaya leaves, neem and bael, which combat dengue infection via dengue protease, helicase, methyl transferase and polymerase are summarized.

2021 ◽  
Author(s):  
Prateek Kumar ◽  
Taniya Bhardwaj ◽  
Neha Garg ◽  
Rajanish Giri

AbstractSpike protein of human coronaviruses has been a vital drug and vaccine target. The multifunctionality of this protein including host receptor binding and apoptosis has been proved in several coronaviruses. It also interacts with other viral proteins such as membrane (M) protein through its C-terminal domain. The specific dibasic motif signal present in cytosolic region at C-terminal of spike protein helps it to localize within the endoplasmic reticulum (ER). However, the structural conformation of cytosolic region is not known in SARS-CoV-2 using which it interacts with other proteins and transporting vesicles. Therefore, we have demonstrated the conformation of cytosolic region and its dynamics through computer simulations up to microsecond timescale using OPLS and CHARMM forcefields. The simulations have revealed the unstructured conformation of cytosolic region (residues 1242-1273). Also, in temperature dependent replica-exchange molecular dynamics simulations it has shown to form secondary structures. We believe that our findings will surely help us understand the structure-function relationship of the spike protein’s cytosolic region.


2020 ◽  
Vol 7 (1) ◽  
pp. 4-16
Author(s):  
Daria Kotlarek ◽  
Agata Pawlik ◽  
Maria Sagan ◽  
Marta Sowała ◽  
Alina Zawiślak-Architek ◽  
...  

Targeted Protein Degradation (TPD) is an emerging new modality of drug discovery that offers unprecedented therapeutic benefits over traditional protein inhibition. Most importantly, TPD unlocks the untapped pool of the proteome that to date has been considered undruggable. Captor Therapeutics (Captor) is the fourth global, and first European, company that develops small molecule drug candidates based on the principles of targeted protein degradation. Captor is located in Basel, Switzerland and Wroclaw, Poland and exploits the best opportunities of the two sites – experience and non-dilutive European grants, and talent pool, respectively. Through over $38 M of funding, Captor has been active in three areas of TPD: molecular glues, bi-specific degraders and direct degraders, ObteronsTM.


Author(s):  
M. G. Monika Bai ◽  
H. Vignesh Babu ◽  
V. Lakshmi ◽  
M. Rajeswara Rao

Fluorescent porous organic polymers are a unique class of materials owing to their strong aggregation induced emission, long range exciton migration and permanent porosity, thus envisioned to possess a wide range of applications (sensing, OLEDs).


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
P. M. Aja ◽  
P. C. Agu ◽  
E. M. Ezeh ◽  
J. N. Awoke ◽  
H. A. Ogwoni ◽  
...  

Abstract Background Cancer chemotherapy is difficult because current medications for the treatment of cancer have been linked to a slew of side effects; as a result, researchers are tasked with developing greener cancer chemotherapies. Moringa oleifera has been reported with several bioactive compounds which confirm its application for various ailments by traditional practitioners. In this study, we aim to prospect the therapeutic potentials of M. oleifera phytocompounds against cancer proliferation as a step towards drug discovery using a computational approach. Target proteins: dihydrofolate reductase (DHFR) and B-Cell Lymphoid-2 (BCL-2), were retrieved from the RCSB PDB web server. Sixteen and five phytocompounds previously reported in M. oleifera leaves (ML) and seeds (MS), respectively, by gas chromatography–mass spectrometry were synthesized and used in the molecular docking study. For accurate prediction of binding sites of the target proteins; standard inhibitors, Methotrexate (MTX) for DHFR, and Venetoclax (VTC) for BCL-2, were docked together with the test compounds. We further predicted the ADMET profile of the potential inhibitors for an insight into their chance of success as candidates in drug discovery. Results Results for the binding affinities, docking poses, and the interactions showed that ML2, ML4-6, ML8-15, and MS1-5 are potential inhibitors of DHFR and BCL-2, respectively. In the ADMET profile, ML2 and ML4 showed the best drug-likeness by non-violation of Lipski Rule of Five. ML4-6, ML8, ML11, ML14-15, and MS1, MS3-5 exhibit high GI absorption; ML2, ML4-6, ML8, MS1, and MS5 are blood–brain barrier permeants. ML2, ML4, ML9, ML13, and MS2 do not interfere with any of the CYP450 isoforms. The toxicity profile showed that all the potential inhibitors are non-carcinogenic and non-hERG I (human ether-a-go-go related gene I) inhibitors. ML4, ML11, and MS4 are hepatotoxic and ML7, ML10, and MS4 are hERG II inhibitors. A plethora of insights on the toxic endpoints and lethal concentration values showed that ML5, ML13, and MS2 are comparatively less lethal than other potential inhibitors. Conclusion This study has demonstrated that M. oleifera phytocompounds are potential inhibitors of the disease proteins involved in cancer proliferation, thus, an invaluable step toward the discovery of cancer chemotherapy with lesser limitations.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Paul Erhardt ◽  
Kenneth Bachmann ◽  
Donald Birkett ◽  
Michael Boberg ◽  
Nicholas Bodor ◽  
...  

Abstract This project originated more than 15 years ago with the intent to produce a glossary of drug metabolism terms having definitions especially applicable for use by practicing medicinal chemists. A first-draft version underwent extensive beta-testing that, fortuitously, engaged international audiences in a wide range of disciplines involved in drug discovery and development. It became clear that the inclusion of information to enhance discussions among this mix of participants would be even more valuable. The present version retains a chemical structure theme while expanding tutorial comments that aim to bridge the various perspectives that may arise during interdisciplinary communications about a given term. This glossary is intended to be educational for early stage researchers, as well as useful for investigators at various levels who participate on today’s highly multidisciplinary, collaborative small molecule drug discovery teams.


2017 ◽  
Vol 3 (8) ◽  
pp. 1700181 ◽  
Author(s):  
Nitin Saxena ◽  
Mihael Čorić ◽  
Anton Greppmair ◽  
Jan Wernecke ◽  
Mika Pflüger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document