Synthesis of Chalcone Derivatives by Phthalhydrazide-Functionalized TiO2-Coated Nano-Fe3O4 as a New Heterogeneous Catalyst

2020 ◽  
Vol 17 ◽  
Author(s):  
Forough Motamedi Nia ◽  
Mahnaz Farahi ◽  
Bahador Karami ◽  
Raziyeh Keshavarz

Abstract:: Phthalhydrazide immobilized on TiO2-coated nano Fe3O4 (Fe3O4-P) was synthesized and characterized by FT-IR, XRD, SEM, EDS and VSM analysis. The resulting magnetic nanocatalyst was used as a catalyst for the synthesis of chalcone derivatives which affords the desired products in good to excellent yields. This catalyst can be isolated readily after completion of the reaction by an external magnetite field and reused several times without significant loss of activity.

RSC Advances ◽  
2017 ◽  
Vol 7 (74) ◽  
pp. 46644-46650 ◽  
Author(s):  
Mahnaz Farahi ◽  
Bahador Karami ◽  
Raziyeh Keshavarz ◽  
Foroogh Khosravian

A novel magnetically heterogeneous catalyst based on the immobilization of boron sulfonic acid onto Fe3O4@SiO2nanoparticles (Fe3O4@SiO2–BSA) is reported. It was characterizedviaFT-IR, XRD, SEM, EDS, and VSM analysis.


2020 ◽  
Vol 17 (11) ◽  
pp. 857-863
Author(s):  
Mohammad Ali Nasseri ◽  
Seyyedeh Ameneh Alavi ◽  
Milad Kazemnejadi ◽  
Ali Allahresani

A convenient and efficient chiral CuFe2O4@SiO2-Mn(III) Ch.salen nanocatalyst has been developed for the C-N cross-coupling reactions of aryl halides/ phenylboronic acid with N-heterocyclic compounds in water and/or DMSO under mild conditions. The catalyst could be applied for the N-arylation of a variety of nitrogen-containing heterocycles with aryl chlorides, bromides, iodides and phenylboronic acid under mild conditions. Moderate to good yields were achieved for all substrates. The structure of catalyst was characterized using various techniques including FT-IR, FE-SEM, EDX, XRD, TEM and TGA. The catalyst can be simply recovered and reused for several times without significant loss of activity.


2020 ◽  
Vol 17 ◽  
Author(s):  
Saeid Azimi ◽  
Niloofar Mohamadighader

Abstract: A new solid catalyst was synthesized from an ionic liquid and heterogenised by changing anion reaction. The new heterogeneous acidic catalyst was characterized by SEM images, EDS analysis, AFM images, Ft-IR, HNMR, 13CNMR and Mass Spectroscopy. It was applied to synthesis of tri-arylmethanes throughout one-pot tri-component reactions among aromatic aldehydes, N,N-dimethylaniline and other carbonic nucleophiles such as anisole and indole. Hence, synthesis of convenient and inexpensive micro-heterogeneous catalyst was introduced, the efficiency of which was confirmed. Also, various useful products were synthesized throughout this simple and clean procedure.


SynOpen ◽  
2021 ◽  
Author(s):  
Mina Ghassemi ◽  
Ali Maleki

Copper ferrite (CuFe2O4) magnetic nanoparticles (MNPs) were synthesized via thermal decomposition method and applied as a reusable and green catalyst in the synthesis of functionalized 4H-pyran derivatives using malononitrile, an aromatic aldehyde and a β-ketoester in ethanol at room temperature. Then it was characterized by Fourier transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDX) analysis, scanning electron microscopy (SEM) images, thermo gravimetric and differential thermo gravimetric (TGA/DTG) analysis. The catalyst was recovered from the reaction mixture by applying an external magnet and decanting the mixture. Recycled catalyst was reused for several times without significant loss in its activity. Running the one-pot three-component reaction at room temperature, no use of eternal energy source and using a green solvent provide benign, mild, and environmentally friendly reaction conditions; as well, ease of catalyst recovering, catalyst recyclability, no use of column chromatography and good to excellent yields are extra advantages of this work.


2021 ◽  
Vol 12 (6) ◽  
pp. 7159-7176

The substituted chalcone derivatives 1–7 have been synthesized, and spectroscopic characterization were done as done using the experimental FT-IR, UV-Vis, GC-MS, 1D NMR spectroscopy. The favored conformation of substituted chalcone 3 was predicted theoretically by geometry optimization structure selected geometrical parameters and molecular properties such as NBO, AIM, HOMO-LUMO, MEP surface, and atomic charges were derived from optimized structures. The 1H and 13C NMR spectral data had been additionally computed using the Gaussian-09 package and compared with the experimental values. The antibacterial and antifungal activity was derived by the disc diffusion method.


2020 ◽  
Vol 213 ◽  
pp. 01003
Author(s):  
Hui Li ◽  
Xi Cao ◽  
Huiting He ◽  
Jian Liu ◽  
Weijian Xiang ◽  
...  

A novel solid-acid catalyst (PVC-EDA-SO4H) based on polyvinyl chloride (PVC) were prepared after amination of Ethylenediamine (EDA) and anchorage of sulfuric acid. The as-prepared catalyst was characterized by FT-IR, Element analysis, Chemical titration and Thermal analysis, the results indicated that the sulfuric acid was successfully anchored on PVC. The PVC-EDA-SO4H showed excellent catalytic performance for the synthesis of bisphenol F, and achieved almost high yield and selectivity (94%) of BPF under the mind reaction conditions. Meanwhile, exhibited excellent reusability without the significant loss after six cycles via simple filtration.


2015 ◽  
Vol 33 (1) ◽  
pp. 163-168 ◽  
Author(s):  
Nitin R. Dighore ◽  
Priyanka L. Anandgaonker ◽  
Suresh T. Gaikwad ◽  
Anjali S. Rajbhoj

AbstractCrystalline MoO3 nanoparticles were obtained by electrochemical synthesis process using tetrapropylammonium bromide as a stabilizer and structure-directing agent in ACN:THF(4:1) solvent. Formation of MoO3 nanoparticles took place at a constant supply current of 14 mA/cm2. These synthesized MoO3 nanoparticles were characterized by UV-Vis spectroscopy, FT-IR spectroscopy, powder X-ray diffraction (XRD), scanning electron microscopy (SEM). So prepared MoO3 nanoparticles were used as a heterogeneous catalyst for the synthesis of 2,6-bis(benzylidene)cyclohexanone derivatives. This protocol offers several advantages, such as simple work-up procedure, recyclability of the catalyst, excellent product yield in a short reaction time and purification of products with a non-chromatographic method.


2015 ◽  
Vol 13 (14) ◽  
pp. 4344-4350 ◽  
Author(s):  
Devendar Reddy Kommidi ◽  
Ramakanth Pagadala ◽  
Surjyakanta Rana ◽  
Parvesh Singh ◽  
Suhas A. Shintre ◽  
...  

One-pot efficient synthetic protocol is described for the synthesis of carbapenem chalcone derivatives using AAPTMS@MCM-41 heterogeneous catalyst.


2018 ◽  
Vol 71 (8) ◽  
pp. 559 ◽  
Author(s):  
Ren-Qiang Yang ◽  
Ni Zhang ◽  
Xiang-Guang Meng ◽  
Xiao-Hong Liao ◽  
Lu Li ◽  
...  

A novel difunctional magnetic nanocatalyst (DMNC) was prepared and used to catalyse the hydrolytic breakage of β-1,4-glycosidic bonds. The functional nanoparticle displayed excellent catalytic activity for hydrolysis of cellobiose to glucose under moderate conditions. The conversion of cellobiose and yield of glucose could reach 95.3 and 91.1 %, respectively, for a reaction time of 6 h at pH 4.0 and 130°C. DMNC was also an efficient catalyst for the hydrolysis of cellulose: 53.9 % microcrystalline cellulose was hydrolyzed, and 45.7 % reducing sugar was obtained at pH 4.0 and 130°C after 10 h. The magnetic catalyst could be recycled and reused five times without significant loss of catalytic activity.


BMC Chemistry ◽  
2019 ◽  
Vol 13 (1) ◽  
Author(s):  
Hossein Shahbazi-Alavi ◽  
Sheida Khojasteh-Khosro ◽  
Javad Safaei-Ghomi ◽  
Maryam Tavazo

Abstract Crosslinked sulfonated polyacrylamide (Cross-PAA-SO3H) attached to nano-Fe3O4 as a superior catalyst has been used for the synthesis of 3-alkyl-4-phenyl-1,3-thiazole-2(3H)-thione derivatives through a three-component reactions of phenacyl bromide or 4-methoxyphenacyl bromide, carbon disulfide and primary amine under reflux condition in ethanol. A proper, atom-economical, straightforward one-pot multicomponent synthetic route for the synthesis of 1,3-thiazoles in good yields has been devised using crosslinked sulfonated polyacrylamide (Cross-PAA-SO3H) tethered to nano-Fe3O4. The catalyst has been characterized by Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), dynamic light scattering (DLS), X-ray powder diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), thermogravimetric analysis (TGA) and vibrating-sample magnetometer (VSM).


Sign in / Sign up

Export Citation Format

Share Document