Isolation, Derivatization and Bioactive Properties of Natural Lignin Based Hydroxycinnamic Acids: A Review

Author(s):  
Ramandeep Kaur ◽  
Mansi Goyal

Abstract:: Lignin, one of the major components of lignocellulosic materials, is the largest natural source of aromatic building blocks on the planet having high service potential for producing valuable chemicals and fuels. It is surrounded by an extensive network of hemicellulose and cellulose in lignocelluloses such as agricultural residues, processing by-products, forestry residues, etc. Therefore, its extraction needs proper procedures, which have been researched worldwide in the past few decades. Lignin is a complex phenolic polymer with hydroxycinnamyl alcohols i.e. p-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol as its monomers. Also, lignin based phenolic acids i.e. substituted hydroxycinnamic acids such as pcoumaric acid, ferulic acid, caffeic acid, syringic acid, are core structural moieties in various drug categories such as antimicrobial, anti‐inflammatory, analgesic, anti-tyrosinase, antihistamine, antirheumatic and anti-thrombosis agents. Therefore, differently substituted hydroxycinnamic acids isolated from lignin have been explored recently with a view of dual advantage of valorization of unavoidable wastes; and exploiting drugs, which would probably have no harmful side effects because of their natural origin. In this review, recent research findings on the extraction of lignin followed by classification of natural phenolic acids, isolation of substituted hydroxycinnamic acids from lignin and their derivatization for various bioactive properties are discussed.

Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 381
Author(s):  
Alessandro Nanni ◽  
Mariafederica Parisi ◽  
Martino Colonna

The plastic industry is today facing a green revolution; however, biopolymers, produced in low amounts, expensive, and food competitive do not represent an efficient solution. The use of wine waste as second-generation feedstock for the synthesis of polymer building blocks or as reinforcing fillers could represent a solution to reduce biopolymer costs and to boost the biopolymer presence in the market. The present critical review reports the state of the art of the scientific studies concerning the use of wine by-products as substrate for the synthesis of polymer building blocks and as reinforcing fillers for polymers. The review has been mainly focused on the most used bio-based and biodegradable polymers present in the market (i.e., poly(lactic acid), poly(butylene succinate), and poly(hydroxyalkanoates)). The results present in the literature have been reviewed and elaborated in order to suggest new possibilities of development based on the chemical and physical characteristics of wine by-products.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 503
Author(s):  
Morten Gundersen ◽  
Guro Austli ◽  
Sigrid Løvland ◽  
Mari Hansen ◽  
Mari Rødseth ◽  
...  

Sustainable methods for producing enantiopure drugs have been developed. Chlorohydrins as building blocks for several β-blockers have been synthesized in high enantiomeric purity by chemo-enzymatic methods. The yield of the chlorohydrins increased by the use of catalytic amount of base. The reason for this was found to be the reduced formation of the dimeric by-products compared to the use of higher concentration of the base. An overall reduction of reagents and reaction time was also obtained compared to our previously reported data of similar compounds. The enantiomers of the chlorohydrin building blocks were obtained by kinetic resolution of the racemate in transesterification reactions catalyzed by Candida antarctica Lipase B (CALB). Optical rotations confirmed the absolute configuration of the enantiopure drugs. The β-blocker (S)-practolol ((S)-N-(4-(2-hydroxy-3-(isopropylamino)propoxy)phenyl)acetamide) was synthesized with 96% enantiomeric excess (ee) from the chlorohydrin (R)-N-(4-(3-chloro-2 hydroxypropoxy)phenyl)acetamide, which was produced in 97% ee and with 27% yield. Racemic building block 1-((1H-indol-4-yl)oxy)-3-chloropropan-2-ol for the β-blocker pindolol was produced in 53% yield and (R)-1-((1H-indol-4-yl)oxy)-3-chloropropan-2-ol was produced in 92% ee. The chlorohydrin 7-(3-chloro-2-hydroxypropoxy)-3,4-dihydroquinolin-2(1H)-one, a building block for a derivative of carteolol was produced in 77% yield. (R)-7-(3-Chloro-2-hydroxypropoxy)-3,4-dihydroquinolin-2(1H)-one was obtained in 96% ee. The S-enantiomer of this carteolol derivative was produced in 97% ee in 87% yield. Racemic building block 5-(3-chloro-2-hydroxypropoxy)-3,4-dihydroquinolin-2(1H)-one, building block for the drug carteolol, was also produced in 53% yield, with 96% ee of the R-chlorohydrin (R)-5-(3-chloro-2-hydroxypropoxy)-3,4-dihydroquinolin-2(1H)-one. (S)-Carteolol was produced in 96% ee with low yield, which easily can be improved.


Author(s):  
Désirée Popadić ◽  
Dipali Mhaindarkar ◽  
Mike H. N. Dang Thai ◽  
Helen C. Hailes ◽  
Silja Mordhorst ◽  
...  

The polyphosphate-driven bicyclic S-adenosylmethionine (SAM) regeneration system uses S-methylmethionine as a ‘2-in-1’ methyl donor without producing by-products and can be run with SAM nucleobase analogues such as S-cytidyl- and S-inosylmethionine.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 165
Author(s):  
Elisabetta Bravi ◽  
Giovanni De Francesco ◽  
Valeria Sileoni ◽  
Giuseppe Perretti ◽  
Fernanda Galgano ◽  
...  

The brewing industry produces high quantities of solid and liquid waste, causing disposal issues. Brewing spent grains (BSGs) and brewing spent hop (BSH) are important by-products of the brewing industry and possess a high-value chemical composition. In this study, BSG and BSH, obtained from the production process of two different types of ale beer (Imperial red and Belgian strong beer) were characterized in terms of valuable components, including proteins, carbohydrates, fat, dietary fiber, β-glucans, arabinoxylans, polyphenols, and phenolic acids, and antioxidant activity (Ferric Reducing Antioxidant Power Assay (FRAP), 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS)). Significant concentrations of total polyphenols were observed in both BSH and BSG samples (average of about 10 mg GAE/g of dry mass); however, about 1.5-fold higher levels were detected in by-products of Belgian strong ale beer compared with Imperial red. Free and bound phenolic acids were quantified using a validated chromatographic method. A much higher level of total phenolic acids (TPA) (about 16-fold higher) was found in BSG samples compared with BSHs. Finally, their antioxidant potential was verified. By-products of Belgian strong ale beer, both BSG and BSH, showed significantly higher antioxidative capacity (about 1.5-fold lower inhibitory concentration (IC50) values) compared with spent grains and hop from the brewing of Imperial red ale. In summary, BSG and BSH may be considered rich sources of protein, carbohydrates, fiber, and antioxidant compounds (polyphenols), and have the potential to be upcycled by transformation into value-added products.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 662
Author(s):  
Urszula Złotek ◽  
Sławomir Lewicki ◽  
Anna Markiewicz ◽  
Urszula Szymanowska ◽  
Anna Jakubczyk

The study presents the effect of drying methods (traditional, convection, microwave, and freeze-drying) on the content and bioactivity (determined as antioxidative, anti-inflammatory, and antiproliferative potential) of potentially bioavailable fractions of phenolic acids contained in lovage elicited with jasmonic acid (JA) and yeast extract (YE) and in untreated control leaves. The highest amount of syringic acid was recorded in the convectionally dried lovage samples, while ethanolic extracts from lyophilized lovage had the highest content of protocatechuic and caffeic acids. The drying method significantly influenced the tested properties only in some cases. The traditional drying resulted in lower antioxidant potential, while convectional drying caused a reduction of the lipoxygenase inhibition ability of the samples after simulated digestion. Samples containing the control and elicited lovage leaves dried with convectional and traditional methods exhibited the highest cytotoxicity against a prostate cancer epithelial cell line.


2021 ◽  
Vol 32 ◽  
pp. 100550
Author(s):  
Daniel A. Grajales-Hernández ◽  
Mariana A. Armendáriz Ruiz ◽  
Victor Contreras-Jácquez ◽  
Juan Carlos Mateos-Díaz

Spatium ◽  
2015 ◽  
pp. 76-83
Author(s):  
Ranka Gajic

The paper presents findings of research about the classification of New Belgrade?s super-blocks using the typomorphology approach and the morphogenetic analysis of urban morphology in relation to land use. The example of New Belgrade is particularly interesting given the fact that the morphological patterns of land use within its superblocks were created during the period of non-market economy in Socialism, and now it is possible to review the effect that the socio-political transition into Capitalism, which started in the 1990s, has had on its land use. As a result, a data base with the typology of residential super-blocks of New Belgrade is created: from the perspective of urban land use there are four main morphological types (with the subtypes) taking into account the morphology of the position of the buildings on the terrain, and traffic (cars-pedestrian) flows. The morphogenetic analysis reveals that after the 1990s there are processes pointing to powerful influence of land policy driven by private interests. Research findings suggest that nowadays there are negative trends of using the land in super-blocks in New Belgrade - e.g. percentage of land occupancy by buildings is getting bigger and almost 100% of the un-built soil in the newly developed super-blocks is covered /paved.


2018 ◽  
Vol 15 (30) ◽  
pp. 12-18
Author(s):  
G. D. LEIROSE ◽  
M-F GRENIER-LOUS TALOT ◽  
A. H. OLIVEIRA

Natural substances are the basis of many types of industries and represent a growing market. The study of these products and the development of analytical methods should accompany this growth to ensure quality and provenance to consumers. An example to be discussed is the L(+)-Tartaric acid, an organic compound of molecular formula C4H6O6. This organic acid is widely applied in wine, food and pharmaceutical industry. It is obtained naturally through the fermentation of fruits, especially grape and tamarind. Synthetically, there are two ways of obtaining L(+)-tartaric acid on industrial scale. It can be synthesized by the reaction of maleic anhydride with hydrogen peroxide, which is derived from petroleum by-products. And by biotechnological synthesis, in which cis-epoxy succinic acid, also derived from petroleum, is converted into L(+)-tartaric acid by hydrolase enzyme. The market for tartaric acid is growing and is considered promising. Currently, there is a lack of legislation and specific rules that allow classification of tartaric acid according to its origin. This legal vacuum precludes quality assurance for the consumer. This lack of safety is a matter of great concern as applications of tartaric acid come directly to final consumer.


2018 ◽  
Vol 32 (15) ◽  
pp. 1850155 ◽  
Author(s):  
Chengwei Dong

In this paper, we systematically research periodic orbits of the Kuramoto–Sivashinsky equation (KSe). In order to overcome the difficulties in the establishment of one-dimensional symbolic dynamics in the nonlinear system, two basic periodic orbits can be used as basic building blocks to initialize cycle searching, and we use the variational method to numerically determine all the periodic orbits under parameter [Formula: see text] = 0.02991. The symbolic dynamics based on trajectory topology are very successful for classifying all short periodic orbits in the KSe. The current research can be conveniently adapted to the identification and classification of periodic orbits in other chaotic systems.


Sign in / Sign up

Export Citation Format

Share Document