Current Research on Pro-Drug Therapies for Parkinson's and Alzheimer's Disease

2021 ◽  
Vol 18 ◽  
Author(s):  
Cui Huo ◽  
Lei Wu ◽  
Zhiqiang Jiang ◽  
Jiacheng Yang ◽  
Zhouyu Wang ◽  
...  

: Background: alzheimer's disease (ad) and parkinson's (pd) disease are common neurodegenerative conditions of the central nervous system (cns). Thus, these diseases have only been treated symptomatically since no approved drug is available that provides a complete cure. Objectives: through reading relevant literature published at home and abroad, the method and significance of prodrug strategy to increase the efficacy of ad and pd drugs were discussed. Methods: the biological mechanisms and currently approved drugs for both diseases have been discussed, revealing that most of these treatments utilized existing prodrug design strategies, including increased lipophilicity, and the use of transporters mediation and bio-oxidation to improve oral bioavailability and brain permeability. Results: the purpose of this paper is to review the research progress in the treatment of neurodegenerative diseases (ndds), especially ad and pd, using the prodrug strategy. The research of drug bioavailability and the prodrug strategy of cns targeted drug delivery lay the foundation for drug development to treat these diseases. Conclusion: the use of prodrug strategies provides important opportunities for the development of novel therapies for ad and pd.

2015 ◽  
Vol 28 (6) ◽  
pp. 939-944 ◽  
Author(s):  
Otávio Augusto Fernandes Marques Bianco ◽  
Patrícia Regina Manzine ◽  
Carla Manuela Crispim Nascimento ◽  
Francisco Assis Carvalho Vale ◽  
Sofia Cristina Iost Pavarini ◽  
...  

ABSTRACTBackground:Studies have demonstrated a decreased platelet ADAM10 expression in patients with Alzheimer's Disease (AD), classifying this protein as a blood-based AD biomarker. About 50% of the patients with AD are diagnosed with depression, which is commonly treated with tricyclic and tetracyclic antidepressants, monoaminoxidade (MAO) inhibitors and, more preferably, with selective serotonin reuptake inhibitors (SSRIs). Considering that a large proportion of patients with AD takes antidepressant medications during the course of the disease we investigated the influence of this medication on the expression of platelet ADAM10, which is considered the main α-secretase preventing beta-amyloid (βA) formation.Methods:Blood was collected for protein extraction from platelets. ADAM10 was analyzed by using western blotting and reactive bands were measured using β-actin as endogenous control.Results:Platelet ADAM10 protein expression in patients with AD was positively influenced by serotoninergic medication.Conclusion:More studies on the positive effects of serotonergic antidepressants on ADAM10 platelet expression should be performed in order to understand its biological mechanisms and to verify whether these effects are reflected in the central nervous system. This work represents an important advance for the study of AD biomarkers, as well as for more effective pharmacological treatment of patients with AD and associated depression.


2019 ◽  
Vol 16 (10) ◽  
pp. 871-894 ◽  
Author(s):  
Eunice D. Farfán-García ◽  
Ricardo Márquez-Gómez ◽  
Mónica Barrón-González ◽  
Teresa Pérez-Capistran ◽  
Martha C. Rosales-Hernández ◽  
...  

Albeit cholinergic depletion remains the key event in Alzheimer’s Disease (AD), recent information describes stronger links between monoamines (trace amines, catecholamines, histamine, serotonin, and melatonin) and AD than those known in the past century. Therefore, new drug design strategies focus efforts to translate the scope on these topics and to offer new drugs which can be applied as therapeutic tools in AD. In the present work, we reviewed the state-of-art regarding genetic, neuropathology and neurochemistry of AD involving monoamine systems. Then, we compiled the effects of monoamines found in the brain of mammals as well as the reported effects of their derivatives and some structure-activity relationships. Recent derivatives have triggered exciting effects and pharmacokinetic properties in both murine models and humans. In some cases, the mechanism of action is clear, essentially through the interaction on G-protein-coupled receptors as revised in this manuscript. Additional mechanisms are inhibition of enzymes for their biotransformation, regulation of free-radicals in the central nervous system and others for the effects on Tau phosphorylation or amyloid-beta accumulation. All these data make the monoamines and their derivatives attractive potential elements for AD therapy.


Author(s):  
V.J.A. Montpetit ◽  
S. Dancea ◽  
S.W. French ◽  
D.F. Clapin

A continuing problem in Alzheimer research is the lack of a suitable animal model for the disease. The absence of neurofibrillary tangles of paired helical filaments is the most critical difference in the processes by which the central nervous system ages in most species other than man. However, restricting consideration to single phenomena, one may identify animal models for specific aspects of Alzheimer's disease. Abnormal fibers resembling PHF have been observed in dorsal root ganglia (DRG) neurons of rats in a study of chronic ethanol intoxication and spontaneously in aged rats. We present in this report evidence that PHF-like filaments occur in ethanol-treated rats of young age. In control animals lesions similar in some respects to our observations of cytoskeletal pathology in pyridoxine induced neurotoxicity were observed.Male Wistar BR rats (Charles River Labs) weighing 350 to 400 g, were implanted with a single gastrostomy cannula and infused with a liquid diet containing 30% of total calories as fat plus ethanol or isocaloric dextrose.


2020 ◽  
Vol 21 (7) ◽  
pp. 628-646
Author(s):  
Gülcem Altinoglu ◽  
Terin Adali

Alzheimer’s disease (AD) is the most common neurodegenerative disease, and is part of a massive and growing health care burden that is destroying the cognitive function of more than 50 million individuals worldwide. Today, therapeutic options are limited to approaches with mild symptomatic benefits. The failure in developing effective drugs is attributed to, but not limited to the highly heterogeneous nature of AD with multiple underlying hypotheses and multifactorial pathology. In addition, targeted drug delivery to the central nervous system (CNS), for the diagnosis and therapy of neurological diseases like AD, is restricted by the challenges posed by blood-brain interfaces surrounding the CNS, limiting the bioavailability of therapeutics. Research done over the last decade has focused on developing new strategies to overcome these limitations and successfully deliver drugs to the CNS. Nanoparticles, that are capable of encapsulating drugs with sustained drug release profiles and adjustable physiochemical properties, can cross the protective barriers surrounding the CNS. Thus, nanotechnology offers new hope for AD treatment as a strong alternative to conventional drug delivery mechanisms. In this review, the potential application of nanoparticle based approaches in Alzheimer’s disease and their implications in therapy is discussed.


2019 ◽  
Vol 16 (6) ◽  
pp. 544-558 ◽  
Author(s):  
Carla Petrella ◽  
Maria Grazia Di Certo ◽  
Christian Barbato ◽  
Francesca Gabanella ◽  
Massimo Ralli ◽  
...  

Neuropeptides are small proteins broadly expressed throughout the central nervous system, which act as neurotransmitters, neuromodulators and neuroregulators. Growing evidence has demonstrated the involvement of many neuropeptides in both neurophysiological functions and neuropathological conditions, among which is Alzheimer’s disease (AD). The role exerted by neuropeptides in AD is endorsed by the evidence that they are mainly neuroprotective and widely distributed in brain areas responsible for learning and memory processes. Confirming this point, it has been demonstrated that numerous neuropeptide-containing neurons are pathologically altered in brain areas of both AD patients and AD animal models. Furthermore, the levels of various neuropeptides have been found altered in both Cerebrospinal Fluid (CSF) and blood of AD patients, getting insights into their potential role in the pathophysiology of AD and offering the possibility to identify novel additional biomarkers for this pathology. We summarized the available information about brain distribution, neuroprotective and cognitive functions of some neuropeptides involved in AD. The main focus of the current review was directed towards the description of clinical data reporting alterations in neuropeptides content in both AD patients and AD pre-clinical animal models. In particular, we explored the involvement in the AD of Thyrotropin-Releasing Hormone (TRH), Cocaine- and Amphetamine-Regulated Transcript (CART), Cholecystokinin (CCK), bradykinin and chromogranin/secretogranin family, discussing their potential role as a biomarker or therapeutic target, leaving the dissertation of other neuropeptides to previous reviews.


2020 ◽  
Vol 17 (2) ◽  
pp. 141-157 ◽  
Author(s):  
Dubravka S. Strac ◽  
Marcela Konjevod ◽  
Matea N. Perkovic ◽  
Lucija Tudor ◽  
Gordana N. Erjavec ◽  
...  

Background: Neurosteroids Dehydroepiandrosterone (DHEA) and Dehydroepiandrosterone Sulphate (DHEAS) are involved in many important brain functions, including neuronal plasticity and survival, cognition and behavior, demonstrating preventive and therapeutic potential in different neuropsychiatric and neurodegenerative disorders, including Alzheimer’s disease. Objective: The aim of the article was to provide a comprehensive overview of the literature on the involvement of DHEA and DHEAS in Alzheimer’s disease. Method: PubMed and MEDLINE databases were searched for relevant literature. The articles were selected considering their titles and abstracts. In the selected full texts, lists of references were searched manually for additional articles. Results: We performed a systematic review of the studies investigating the role of DHEA and DHEAS in various in vitro and animal models, as well as in patients with Alzheimer’s disease, and provided a comprehensive discussion on their potential preventive and therapeutic applications. Conclusion: Despite mixed results, the findings of various preclinical studies are generally supportive of the involvement of DHEA and DHEAS in the pathophysiology of Alzheimer’s disease, showing some promise for potential benefits of these neurosteroids in the prevention and treatment. However, so far small clinical trials brought little evidence to support their therapy in AD. Therefore, large-scale human studies are needed to elucidate the specific effects of DHEA and DHEAS and their mechanisms of action, prior to their applications in clinical practice.


2020 ◽  
Vol 13 (4) ◽  
pp. 273-294 ◽  
Author(s):  
Elahe Zarini-Gakiye ◽  
Javad Amini ◽  
Nima Sanadgol ◽  
Gholamhassan Vaezi ◽  
Kazem Parivar

Background: Alzheimer’s disease (AD) is the most frequent subtype of incurable neurodegenerative dementias and its etiopathology is still not clearly elucidated. Objective: Outline the ongoing clinical trials (CTs) in the field of AD, in order to find novel master regulators. Methods: We strictly reviewed all scientific reports from Clinicaltrials.gov and PubMed databases from January 2010 to January 2019. The search terms were “Alzheimer's disease” or “dementia” and “medicine” or “drug” or “treatment” and “clinical trials” and “interventions”. Manuscripts that met the objective of this study were included for further evaluations. Results: Drug candidates have been categorized into two main groups including antibodies, peptides or hormones (such as Ponezumab, Interferon β-1a, Solanezumab, Filgrastim, Levemir, Apidra, and Estrogen), and naturally-derived ingredients or small molecules (such as Paracetamol, Ginkgo, Escitalopram, Simvastatin, Cilostazo, and Ritalin-SR). The majority of natural candidates acted as anti-inflammatory or/and anti-oxidant and antibodies exert their actions via increasing amyloid-beta (Aβ) clearance or decreasing Tau aggregation. Among small molecules, most of them that are present in the last phases act as specific antagonists (Suvorexant, Idalopirdine, Intepirdine, Trazodone, Carvedilol, and Risperidone) or agonists (Dextromethorphan, Resveratrol, Brexpiprazole) and frequently ameliorate cognitive dysfunctions. Conclusion: The presences of a small number of candidates in the last phase suggest that a large number of candidates have had an undesirable side effect or were unable to pass essential eligibility for future phases. Among successful treatment approaches, clearance of Aβ, recovery of cognitive deficits, and control of acute neuroinflammation are widely chosen. It is predicted that some FDA-approved drugs, such as Paracetamol, Risperidone, Escitalopram, Simvastatin, Cilostazoand, and Ritalin-SR, could also be used in off-label ways for AD. This review improves our ability to recognize novel treatments for AD and suggests approaches for the clinical trial design for this devastating disease in the near future.


2019 ◽  
Author(s):  
Cláudia Yang Santos ◽  
Christine Getter ◽  
John Stoukides ◽  
Brian Ott ◽  
Stephen Salloway ◽  
...  

BACKGROUND The precise mechanisms whereby cardiovascular risk factors increase the risk of Alzheimer’s disease (AD) have not been delineated. We reported that microvessels isolated from AD brains overexpress a diverse array of neurotoxic and inflammatory proteins, which is consistent with the process of vascular activation. In pre-clinical studies using AD animal models we showed that a vascular activation inhibitor reduced vascular-derived neuroinflammation and improved cognitive performance. Thrombin is a key mediator of cerebrovascular activation in AD. OBJECTIVE This study aims to investigate the safety and potential efficacy of the direct thrombin inhibitor dabigatran, in patients with mild cognitive impairment (MCI) or mild AD to decrease vascular-derived neuroinflammation and improve cognitive performance. METHODS Participants will be enrolled then evaluated quarterly throughout the 24-month study. This is a 24-month randomized-control, double-blind, placebo-controlled, multicenter, delayed-start, pilot study evaluating thrombin inhibition in people with biomarker-confirmed MCI probably due to AD or mild AD. 40 - 60 participants will be recruited between 50 - 85 years old. In the initial 9-months of study, either dabigatran or placebo will be orally administered to patients at a dose of 150 mg per day. After 9 months of the placebo-control (Phase I), the placebo arm will cross-over to an active, open-label (Phase II) where all patients will be treated with a 150 mg daily dose of dabigatran orally for an additional 12 months. A 3-month non-treatment follow-up period will assess duration of effects. RESULTS Beginning in July 2019, and concluding in August 2022, this study is expected to publish final results in January 2023. CONCLUSIONS BEACON is a first-in-kind randomized clinical trial targeting thrombin activation in AD therapeutics. This trial will stimulate translational investigations of an FDA-approved drugs in a newly defined therapeutic areas. CLINICALTRIAL Clinicaltrials.gov NCT03752294


2021 ◽  
Vol 14 (5) ◽  
pp. 458
Author(s):  
Barbara Miziak ◽  
Barbara Błaszczyk ◽  
Stanisław J. Czuczwar

Alzheimer’s disease (AD; progressive neurodegenerative disorder) is associated with cognitive and functional impairment with accompanying neuropsychiatric symptoms. The available pharmacological treatment is of a symptomatic nature and, as such, it does not modify the cause of AD. The currently used drugs to enhance cognition include an N-methyl-d-aspartate receptor antagonist (memantine) and cholinesterase inhibitors. The PUBMED, Medical Subject Heading and Clinical Trials databases were used for searching relevant data. Novel treatments are focused on already approved drugs for other conditions and also searching for innovative drugs encompassing investigational compounds. Among the approved drugs, we investigated, are intranasal insulin (and other antidiabetic drugs: liraglitude, pioglitazone and metformin), bexarotene (an anti-cancer drug and a retinoid X receptor agonist) or antidepressant drugs (citalopram, escitalopram, sertraline, mirtazapine). The latter, especially when combined with antipsychotics (for instance quetiapine or risperidone), were shown to reduce neuropsychiatric symptoms in AD patients. The former enhanced cognition. Procognitive effects may be also expected with dietary antioxidative and anti-inflammatory supplements—curcumin, myricetin, and resveratrol. Considering a close relationship between brain ischemia and AD, they may also reduce post-brain ischemia neurodegeneration. An investigational compound, CN-105 (a lipoprotein E agonist), has a very good profile in AD preclinical studies, and its clinical trial for postoperative dementia is starting soon.


Sign in / Sign up

Export Citation Format

Share Document