Formulation and in vitro Evaluation of Hesperidin-Phospholipid Complex and its Antioxidant Potential

2020 ◽  
Vol 15 (1) ◽  
pp. 28-36
Author(s):  
Bhupen Kalita ◽  
Bhargab Nath Patwary

Background: The recent trend of herbal drug delivery has been focused on developing novel drug delivery carriers to address problems related to solubility, oral bioavailability, skin permeation and stability. The phyto-phospholipid complex (phytosomes®) technology has been used to overcome the problems associated with many conventional herbal extracts. Aim: The present work aimed to formulate phospholipid-complex of the flavanoid Hesperidin to enhance its dissolution leading to enhanced oral bioavailability. Method: The complex was prepared by refluxing various molar ratios of hesperidin and PC followed by solvent evaporation. The prepared complexes were evaluated for saturation solubility, partition co-efficient and drug content. The free drug and phospholipid complexes were analyzed in DSC. Surface morphology of the prepared complexes was viewed using SEM images. Selected formulations were subjected to in vitro drug release study. Antioxidant effect was examined by free radical scavenging method. Results: Solubility and partition coefficient of the prepared complexes were improved in comparison to free drug. Based on the results of solubility, partition coefficient and drug content, formulation F2 was selected as an optimized batch. DSC thermograms confirmed the formation of phospholipid complex. Free Hesperidin and Hesperidin-phospholipid complex (F2) showed 46.9 % and 78.20 % of drug release, respectively, at seven hours phosphate buffer (pH 7.4). The optimized formulation showed concentration-dependent anti-oxidant property. Conclusion: Results of the present study suggested that the phospholipid complex of Hesperidin possesses the antioxidant potential and may be of potential use for improving the dissolution of hesperidin and hence oral bioavailability.

Author(s):  
SHUBHAM MUKHERJEE ◽  
SUTAPA BISWAS MAJEE ◽  
GOPA ROY BISWAS

Objective: Hydrogels with scope for utilization in numerous fields possess limited applications due to problems in incorporating wide range of drugs and crossing the lipophilic barrier of the skin. Attempts to overcome these problems by developing organogel hold drawbacks. Challenges posed by drug lipophilicity or skin permeation can be solved by developing bigel formed via combination of lipophilic and hydrophilic gel phases in a definite proportion. The objective of the present study is to formulate and characterize matrix type bigel of soybean oil and HPMCK4M for topical drug delivery. Methods: Four batches of bigels were developed with two organogel formulations of soybean oil containing 20 and 22% w/v Span 60. Both organogels and bigels were examined for compatibility by FTIR spectroscopy, hemocompatibility and characterized for physical appearance, pH, rheological behavior and in vitro drug release pattern. Results: FTIR study confirmed compatibility between paracetamol and components of organogel or bigel. The oily feel of organogels disappeared with bigels which possessed a creamy and smooth texture. Pseudoplastic behaviour was confirmed by Ostwald-de wale power-law model in both organogels and bigels. Improved drug release was observed in bigel (BG1) formulation containing 3%w/v HPMCK4M and soybean oil based organogel with 20% w/v Span 60 as compared to the corresponding organogel (OG1). Organogels were foundto follow either zero-order kinetics (OG1) or Korsmeyer-Peppasmodel (OG2) while the formation of matrix was exhibited in bigels with drug diffusion predominantly of non-Fickian type. Conclusion: Therefore, bigels of soybean oil based organogel with HPMCK4M hydrogel formed gel matrix demonstrating improved drug release for topical application compared to organogel.


2016 ◽  
Vol 9 (1) ◽  
pp. 1 ◽  
Author(s):  
Sumit Durgapal ◽  
Sayantan Mukhopadhyay ◽  
Laxmi Goswami

Objective: The main purpose of this study is to prepare a floating micro articulated drug delivery system of ciprofloxacin by using non-aqueous solvent evaporation technique to increase the bioavailability and therapeutic effectiveness of the drug by prolonging its gastric residence time.Methods: Floating microparticles were prepared by using different low-density polymers such as ethyl cellulose and hydroxypropyl methylcellulose either alone or in combination with the aid of non-aqueous solvent evaporation technique. All the formulated microparticles were subjected to various evaluation parameters such as percentage yield, drug content, drug entrapment, rheological studies, floating characteristics and in vitro drug release studies.Results: Drug-excipient compatibility studies performed with the help of FTIR instrument indicated that there were no interactions. Results revealed that non-aqueous solvent evaporation technique is a suitable technique for the preparation of floating microspheres as most of the formulations were discrete and spherical in shape with a good yield of 65% to 85% and 15 to 22 h of floating duration with 90% of maximum percentage floating capacity shown by formulation FM9. Though, different drug-polymer ratios, as well as a combination of polymers, play a significant role in the variation of overall characteristics of formulations. Based on the data of various evaluation parameters such as particle size analysis, drug content, drug entrapment, rheological studies and in vitro drug release characteristics formulation FM9 was found to fulfil the criteria of ideal floating drug delivery system.Conclusion: Floating microparticles were successfully prepared, and from this study, it can be concluded that the developed floating microspheres of ciprofloxacin can be used for prolonged drug release in the stomach to improve the bioavailability and patient compliance.


2017 ◽  
Vol 9 (6) ◽  
pp. 85
Author(s):  
G. Ravi ◽  
N. Vishal Gupta

Objective: The objective of present investigation was to develop rivastigmine tartrate transdermal film employing factorial design.Methods: The formulations were designed by Design-Expert software-version10. A series of films were prepared by solvent casting method using polymers, plasticizer, permeation enhancer and other solvents. Transdermal films were evaluated for flatness, drug content, tensile strength, in vitro drug release and ex vivo skin permeation study.Results: The flatness was found 100% (percentage) for all film formulations. The drug content of transdermal film was found in the range of 96.51±0.2 to 98.81±0.3%. The tensile strength of transdermal film was found in the range of 6.28±0.06 to 11.56±0.03 N/mm2 (newton/millimeter2) and in vitro drug release at 24th h (hour) was found in the range of 86.24±0.25 to 96.1±0.48%% for various formulations and ex vivo skin permeation study results at 24th h was found in the range of 85.83±0.74 to 97.36±0.93%.Conclusion: These results support the feasibility of developing transdermal film of rivastigmine tartrate for human applications. Thus, transdermal delivery of rivastigmine tartrate film is a safe, painless and cost effective drug delivery system for Alzheimer’s patients.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1218
Author(s):  
Mohammad A. Altamimi ◽  
Afzal Hussain ◽  
Sultan Alshehri ◽  
Syed Sarim Imam ◽  
Usamah Abdulrahman Alnemer

Introduction: Luteolin (LUT) is natural flavonoid with multiple therapeutic potentials and is explored for transdermal delivery using a nanocarrier system. LUT loaded cationic nanoemulsions (CNE1–CNE9) using bergamot oil (BO) were developed, optimized, and characterized in terms of in vitro and ex vivo parameters for improved permeation. Materials and methods: The solubility study of LUT was carried out in selected excipients, namely BO, cremophor EL (CEL as surfactant), labrasol (LAB), and oleylamine (OA as cationic charge inducer). Formulations were characterized with globular size, polydispersity index (PDI), zeta potential, pH, and thermodynamic stability studies. The optimized formulation (CNE4) was selected for comparative investigations (% transmittance as %T, morphology, chemical compatibility, drug content, in vitro % drug release, ex vivo skin permeation, and drug deposition, DD) against ANE4 (anionic nanoemulsion for comparison) and drug suspension (DS). Results: Formulations such as CNE1–CNE9 and ANE4 (except CNE6 and CNE8) were found to be stable. The optimized CNE4 based on the lowest value of globular size (112 nm), minimum PDI (0.15), and optimum zeta potential (+26 mV) was selected for comparative assessment against ANE4 and DS. The %T values of CNE1–CNE9 were found to be ˃95% and CEL content slightly improved the %T value. The spherical CNE4 was compatible with excipients and showed % total drug content in the range of 97.9–99.7%. In vitro drug release values from CNE4 and ANE4 were significantly higher than DS. Moreover, permeation flux (138.82 ± 8.4 µg/cm2·h), enhancement ratio (8.23), and DD (10.98%) were remarkably higher than DS. Thus, ex vivo parameters were relatively high as compared to DS which may be attributed to nanonization, surfactant-mediated reversible changes in skin lipid matrix, and electrostatic interaction of nanoglobules with the cellular surface. Conclusion: Transdermal delivery of LUT can be a suitable alternative to oral drug delivery for augmented skin permeation and drug deposition.


Author(s):  
Satish Puttachari ◽  
Navanath. V. Kalyane ◽  
Sarbani Duttagupta

Cefuroxime axetil has poor bioavailability due to low solubility. This can be surmounted by preparing the drug by self-microemulsifying drug delivery system (SMEDDS). In this study the bioavailability of cefuroxime axetil from SMEDDS and tablets was evaluated in Wistar rats. The optimized SMEDDS formulation was prepared using Labrasol®, Gelucire® 44/14 and Lutrol®E400. The formulation was evaluated for micro-emulsification properties and percent in-vitro dissolution. The HPLC method was developed and optimized to estimate the drug content in the plasma. The method was clearly separating the cefuroxime A and B polymorphs and LOD and LOQ values are satisfactory. Rats were randomized in to two groups - one group of animals were administered with SMEDDS and another with tablet formulation. At frequent intervals the blood samples were withdrawn and analysed for drug content. The pharmacokinetic parameters were calculated using PK Solve software. The calculated bioavailability and tmax from SMEDDS was 1687.06 μg/ mL.min and 50 min, respectively, whereas for tablet it was  1219.803 μg/mL.min and 62 minutes, respectively. The bioavailability of SMEDDS formulation was 1.5 times more than the marketed formulation, indicating a significant improvement in oral bioavailability. In conclusion, this study confirms that the SMEDDS formulation is a viable strategy for enhancing the oral bioavailability of cefuroxime axetil


Author(s):  
Shailendra Kumar Singh ◽  
Pawan Kumar ◽  
Deepak Kumar Jindal ◽  
Vandana Handa ◽  
Jyoti Bilonia

Alopecia areata is a common, chronic inflammatory disease, characterized by patchy hair loss on the scalp, affecting about 2.1% of world population. Presently, minoxidil has been used for treatment of alopecia as topical lotion, but associated with many drawbacks like systemic side effects and low contact time with skin. Therefore, in the present work, minoxidil gel was prepared using a novel copolymer, Sepineo P 600 to overcome these drawbacks. The prepared gel was characterized for pH, drug content, viscosity, spreadability, skin adhesivity, occlusivity, in vitro drug release, ex vivo skin permeation, stability and finally for skin corrosivity. The drug content of the finalized gel was found to be 99.80 ± 0.82%. The formulation showed good spreadability, occlusivity, adhesiveness and viscosity. In vitro release studies showed that the drug release from prepared gel followed matrix release pattern as compared to lotion. Mathematical modelling of the drug release data suggested Higuchi release model. The formulated minoxidil gel was found to be non-corrosive and stable when subjected to accelerate as well as real time stability studies. Overall, the minoxidil gel formulation was suitable for skin application and can be an effective dosage form for the treatment of Alopecia areata.


Author(s):  
Monica RP Rao ◽  
Pooja B. Karanjkar

Efavirenz, a non-nucleotide reverse transcriptase inhibitor is an important drug for treating patients with Human Immunodeficiency Virus infections. It belongs to BCS class II have low solubility and poor intrinsic dissolution rate. It is highly basic (pKa 10.2) which makes it suitable candidate for floating dosage form for continuous delivery in stomach.The study was aimed to improve the solubility by solid dispersion technique.Saturation solubility study and drug content were evaluated for solid dispersion preparation. Saturation solubility shows 8 fold increases in 0.1 N HCL compared to plain drug and drug content was found to be between 95%-102%. Further effervescent floating gastroretentive drug delivery system was prepared by 32 full factorial design with independent variables i.e., concentration of HPMC K100 as matrix forming agent and citric acid as gas generating agent. Lag time, floating time, percent drug release were studied as responses. The optimized batch exhibited floating lag time of 40 sec and the in vitro release studies showed 89.5% drug release in 9 h and tablet remained floating for greater than 8 h. The study thus demonstrated that solubility is increased by solid dispersion technique and floating delivery systems may increase solubility and bioavailability of Efavirenz.


Author(s):  
FIROZ S ◽  
PADMINI K ◽  
PADMASREE K ◽  
SRAVANI N ◽  
HEMALATHA A ◽  
...  

Objectives: The present study describes the preparation and evaluation of a Poloxamer 188 (P188)-based thermoreversible gel using Carbopol 934P (C934P) as a mucoadhesive polymer of pseudoephedrine for enhancing the bioavailability and to avoid the first-pass metabolism. Materials and Methods: Five formulations (F1-F5) were prepared using cold method. The prepared gels were characterized by pH, drug content, spreadability, mucoadhesive force, gelation temperature, and drug release profile. Thermoreversibility of P188/C934P gel was demonstrated by rheological studies. The drug-polymer compatibility was studied using Fourier transform infrared (FTIR). Results: The incorporation of carbopol into P188 gel also reduced the amounts of drug released from the gel formulations. FT-IR studies revealed that there are no interactions between the drug and polymers. Drug content of gels was estimated and the results were found to be satisfactory. In vitro dissolution studies revealed a good drug release from the gels. The drug release was higher in formulations F4 and F5 and lower in F1, F2, and F3 formulations. The order of drug release was found to be F5>F4>F3>F2>F1. Conclusion: These findings suggested that developed thermoreversible gels could be used as promising dosage forms to rectal drug delivery for prolonged periods in the management of hemorrhoids.


2018 ◽  
Vol 10 (4) ◽  
pp. 117 ◽  
Author(s):  
Suvendu Kumar Sahoo ◽  
Padilam Suresh ◽  
Usharani Acharya

Objective: The main purpose of this investigation was to prepare self-microemulsifying drug delivery system (SMEDDS) for enhancement of oral bioavailability of a poorly water soluble drug telmisartan (TLS), a BCS class II drug by improving its dissolution rate. Methods: Self-Emulsifying Drug Delivery Systems (SEDDS) of TLS were formulated using cinnamon essential oil as the oil phase, Gelucire 44/14 as the surfactant and Transcutol HP as co-surfactant. Drug-excipient interactions were studied by FTIR spectroscopy. The formulations were evaluated for its self-emulsifying ability, clarity, and stability of the aqueous dispersion after 48 h and the phase diagram was constructed to optimize the system. Selected formulations were characterized in terms of droplet size distribution, zeta potential, cloud point and were subjected to in vitro drug release studies. The bioavailability of optimized formulation was assessed in New Zealand white rabbits.Results: By considering smaller droplet size, higher zeta potential and faster rate of drug release the formulation TF9 was chosen as optimized SMEDDS formulations. TF9 was robust to different pH media and dilution volumes, remained stable after three cooling-heating cycles and after stored at 4 °C and 25 °C for 3 mo without showing a significant change in droplet size. The pharmacokinetic study in rabbits showed SMEDDS have significantly increased the Cmax and area under the curve (AUC) of TLS compared to suspension (P<0.05).Conclusion: SMEDDS can be an effective oral dosage form for enhancing aqueous solubility and improving oral bioavailability of poorly water soluble drugs.


Author(s):  
LANKALAPALLI SRINIVAS ◽  
SHANTI SAGAR

Objective: The current research was aimed to formulate and evaluate raft forming gastro retentive floating drug delivery systems of Lafutidine for improving gastric residence time and sustained drug release for an extended time. Methods: Using Box–Behnken experimental design 17 formulations of lafutidine GRDDS were designed and evaluated for various parameters like physical appearance, pH, In vitro gelling study, in vitro buoyancy study, measurement of viscosity, density measurement, gel strength, drug content, acid neutralization capacity, the profile of neutralization, in vitro dissolution, release kinetic and stability studies. Results: All the evaluations were performed and observed that the values were within range, and the buoyancy lag time ranged within 14.76 to 25.84 sec and the formulations remained buoyant for more than 8h with the gelling time of 12h, the drug content was ranging from 98.96 to 99.55 %, and in vitro release was 86.86 to 99.34% by the end of 12h. The release kinetics followed zero-order with Higuchi’s model that indicating that drug release was found to be followed by the matrix diffusion process. Conclusion: Out of all formulations F3 was the optimized formulation and it was further characterized for FTIR, DSC, and stability studies, which exposed that there were no interactions amongst drug and excipients and no major change in the formulation and found to be stable.


Sign in / Sign up

Export Citation Format

Share Document