Identification of Natural Compounds to Inhibit Sonic Hedgehog Pathway in Oral Cancer

Author(s):  
Hitarth Patel ◽  
Jigna Joshi ◽  
Apexa Raval ◽  
Franky Shah

Background: Conventional treatment resistance remains a significant problem in cancer care. Cancer stem cells might play a major role in treatment resistance, and as a result, basic stem cell pathways are instrumental in cancer. Sonic Hedgehog signaling has not been widely studied in oral cancer, and being one of the major cancer stem cell pathways, targeting it with natural compounds could open many opportunities in the treatment scenario. Objective: The objective of the study was to identify the role of various natural compounds as an anti-cancer agent for oral cancer by targeting the Hedgehog signaling pathway. Methods: The selection of natural compounds were identified through literature review and NPACT database. The protein (3M1N and 3MXW) and ligand molecules were retrieved through the PDB and PubChem database. To carry out docking experiments, the AutoDock 4.2 program was used to study the interaction between the identified protein and ligand. Results: Among the 13 identified natural compounds, the top three were selected based on their binding energy. The higher the binding energy on the negative side, the better the interaction formed between protein and ligand. The natural compound showing best results with 3M1N protein were Butein, Biochanin-A, and Curcumin, whereas, with 3MXW, Zerumbone, Curcumin, and Butein were identified. Conclusion: The identified natural compounds have shown better binding energy to bind the Hh ligands in the absence/presence of a known Sonic Hedgehog inhibitor. Based on the results, natural compounds can be utilized in the current treatment modality for oral cancer either as an individual anti-cancer agent or in combination with the known Sonic Hedgehog inhibitor to curb the increasing incidence rate. Yet, in-vitro evidence in lab setup is required.

Breast Cancer ◽  
2017 ◽  
Vol 24 (5) ◽  
pp. 683-693 ◽  
Author(s):  
Yoshikazu Koike ◽  
Yusuke Ohta ◽  
Wataru Saitoh ◽  
Tetsumasa Yamashita ◽  
Naoki Kanomata ◽  
...  

Neuron ◽  
2011 ◽  
Vol 71 (2) ◽  
pp. 250-262 ◽  
Author(s):  
Rebecca A. Ihrie ◽  
Jugal K. Shah ◽  
Corey C. Harwell ◽  
Jacob H. Levine ◽  
Cristina D. Guinto ◽  
...  

2019 ◽  
Vol 19 (15) ◽  
pp. 1887-1898 ◽  
Author(s):  
Mehmet A. Kocdor ◽  
Hakan Cengiz ◽  
Halil Ates ◽  
Hilal Kocdor

Background: Anaplastic Thyroid Cancer (ATC) is one of the most lethal and aggressive human malignancies. Studies have shown that Cancer Stem-Cell (CSC) phenotype is mainly responsible for ATC aggressiveness. Cytostatic compounds are mostly ineffective because of multidrug resistance mechanisms driven by the CSC phenotype. Taxanes have limited efficacy. Recently, CSC inhibition using plant-derived, less toxic compounds, which have anti-cancer efficacy, has become a novel treatment modality. The aim of the study was to evaluate the anti-cancer activity of two natural compounds (curcumin and deguelin) on ATC cells and their CSC properties. In addition, the efficacies of these compounds were compared with that of docetaxel. Methods: Besides control, five treatment groups were formed. ATC cells (CAL-62) were treated with curcumin, deguelin, docetaxel, and their combinations (curcumin+docetaxel, deguelin+docetaxel) at previously determined IC50 doses. Stemness was analyzed by quantitative estimation of sphere formation in matrigel, expression of several cell surface markers (CD133, CD90, Nanog, and OCT3/4) using flow cytometry, and quantification of the hypoxic status [Oxidative Stress Index (OSI) and Superoxide Dismutase (SOD) activity]. The anti-cancer efficacies of these compounds and their combinations were evaluated by determining the alterations in the cell cycle, apoptosis, and tumoral cell migration. Results: Both the natural compounds (particularly curcumin) significantly suppressed the spheroid formation and cellular motility in matrigel as well as suppressed the accumulation of cells in the G0/1 phase, in which the maximum CSC activity is observed. The compounds did not suppress the expression of CSC markers, but twothirds of the cells expressed CD90. Deguelin was found to be particularly effective in inducing apoptosis similar to docetaxel at IC50 concentrations. Curcumin reduced the OSI and deguelin enhanced the SOD activity, even in docetaxel pre-treated cells. Conclusion: A large proportion of anaplastic tumors might consist of heterogeneous CSC population. Curcumin and deguelin have anti-cancer and several anti-stem cell activities against ATC cells. These natural compounds are capable of altering the aggressive behavior of ATC cells through the inhibition of the CSC phenotype. As a novel therapeutic target, CD90 should be investigated in other ATC cell lines and in vivo models.


Sign in / Sign up

Export Citation Format

Share Document