5-Fluorouracil-Impregnated PLGA Coated Gold Nanoparticles for Augmented Delivery to Lung Cancer: in vitro Investigations

Author(s):  
Rashmi Gupta ◽  
Leena Vishwakarma ◽  
Sunil Kant Guleri ◽  
Gourav Kumar

Background and Objective: The study aimed to investigate the augmented cytotoxic effects of polymer-coated (poly-lactic-co-glycolic acid-PLGA) gold nanoparticles (GNPs) carrying 5-fluorouracil (5-FU) in the management of lung cancer. Materials and Methods: In this study, several formulations were prepared using a double emulsion (water-oil-water) method and evaluated for drug release behavior, compatibility, cell line toxicity (A549), and apoptosis assessment. Results: Characterization results showed spherical polydispersed particles with size 29.11-178.21 nm, polydispersity index (PDI) 0.191-292, and zeta potential (ZP) 11.19-29.21 (-mV), respectively. The optimized polymer-coated 5-FU loaded gold nanoparticles (PFGNPs) illustrated a maximum drug loading (93.09 ± 10.75%) compared to others. The percent cumulative drug release of polymer-coated 5-FU loaded nanoparticles (PFNPs), 5-FU loaded gold nanoparticles (FGNPs), (PFGNPs) and 5-FU solution were 47.87± 1.5, 41.09±1.8, 56.31±1.05, and 98.8±4.2%, respectively, over 10 h. following zero-order release kinetics (except 5-FU solution). From the MTT results, the cytotoxic effect of PFGNPs on the A549 cells was 82.89 % compared to the 5-FU solution (74.91 %). EGFR and KRAS gene expression analysis under the influence of PFNPs, FGNPs, PFGNPs, and 5-FU was studied and observed maximum potency for PFNPs. Conclusion: PLGA coated biogenic gold nanoparticles have a combined effect to achieve high drug loading, sustained delivery, improved efficacy, and enhanced permeation. Conclusively, the approach may be promising to control lung cancer with reduced toxicity and improved efficacy.

2018 ◽  
Vol 6 (11) ◽  
pp. 61-80 ◽  
Author(s):  
Shashank Soni ◽  
Veerma Ram ◽  
Anurag Verma

In the present experimental investigation an attempt has been made to assess the utility of Crushed Puffed Rice (CPR)-High Molecular Weight Chitosan (HMWCH)-Hydroxypropyl Methylcellulose K15M (HPMC K15M) as a polymeric carrier for the sustained stomach delivery of Piroxicam (PRX). A total of nine formulations were prepared by using 3 (2) Taguchi factorial design, physically blending drug and polymer(s) followed by encapsulation into hard gelatin capsules size 1. The prepared capsules were evaluated for various performance such as weight variation, drug contents, in vitro buoyancy and drug release in 0.1 M HCl. The effect of drug loading on in vitro performance of the formulations was also determined. Crushed puffed rice (CPR) remained buoyant for up to average time span of 06 hr as an unwetted irregular mass in 0.1 M HCl. However, when combined with HMWCH or HPMC K15M or HPMC K15M + HMWCH a low -density cylindrical raft type hydrogel was formed which remained buoyant for up to 12 hr and released up to 99% drug in a sustained manner from 8 to 12 hr following zero order release kinetics. It was also observed that drug release from drug + CPR matrices followed Fickian mechanism. Combination of CPR + HMWCH or HMWCH + HPMC K15M also follows Fickian mechanism. Obtained data from the research work suggests that CPR in combination with HMWCH or HPMC K15M or HPMC has sufficient potential to be used as a carrier for stomach specific delivery of gastric irritant drug like PRX.Soni et al., International Current Pharmaceutical Journal, April 2018, 6(11): 61-80http://www.icpjonline.com/documents/Vol6Issue11/01.pdf


2012 ◽  
Vol 62 (3) ◽  
pp. 383-394 ◽  
Author(s):  
Mohammed S. Khan ◽  
Gowda D. Vishakante ◽  
H. G. Shivakumar

The present investigation was undertaken to fabricate porous nanoparticles of metoprolol tartrate by spray-drying using ammonium carbonate as pore former. Prepared nanoparticles were coated with Eudragit S100 polymer in order to prevent the release of metoprolol tartrate in the upper GI tract. It was shown that nanoparticles with low size ranges can be obtained with a low feed inlet rate. Micromeritic studies confirmed that nanoparticle batches are discrete and free flowing. Effects of the pore former on drug loading, porosity and in vitro release were studied. It was found that there was an increase in drug loading and porosity with increasing the amount of pore former. In vitro drug release studies showed that an increase in pore former made drug release faster. Release kinetics proved that nanoparticles follow a zero-order release mechanism.


INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (01) ◽  
pp. 37-43
Author(s):  
Ashwin A. Patil ◽  
Ketan B. Patil ◽  
Laxmikant R. Zawar

Present work focused on thiolation for enhancing the mucoadhesive potential of Gum kondagogu (GK). Thiolation of GK was done by esterification process with 80 % thioglycolic acid in presence of 7N HCl. Thiolated Gum kondagogu (ThioGK) was determined to possess 1.59 ±0.04 mmol of thiol groups/g of the polymer by Ellman’s method. ThioGK was characterized by FTIR, NMR, DSC, XRD, and FE-SEM. The tablets were prepared by direct compression using 75 mg of ThioGK and GK. Tablets containing ThioGK (F1) and GK (F2) were subjected to evaluation of weight variation, hardness and friability and show enhanced disintegration time, swelling behavior, drug release and mucoadhesion. In vitro drug release of batch F1 exhibits complete release of drug in 24 hr with zero order release kinetics. Comparative mucoadhesive strength was studied using chicken ileum by texture analyzer and revealed higher mucoadhesion of tablet containing ThioGK. From the above study, ThioGK was suitability exploited as mucoadhesive sustained release matrix tablet.


2018 ◽  
Vol 8 (5) ◽  
pp. 465-474
Author(s):  
S PADMA PRIYA ◽  
AN Rajalakshmi ◽  
P Ilaveni

Objective: The objective of this research work is to develop and evaluate mucoadhesive microspheres of an anti-migraine drug for sustained release. Materials and Methods:  Mucoadhesive microspheres were prepared by emulsification method using Sodium alginate (SA), polyvinyl pyrrolidone (PVP) and Chitosan in the various drug-polymer ratios of 1:1, 1:2 and 1:3. Nine  formulations were formulated and  evaluated for  possible drug polymer interactions, percentage yield, micromeritic properties, particle size, drug content, drug entrapment efficiency, drug loading, swelling index, In-vitro wash off test, in vitro  drug release, surface morphology and release kinetics. Results: The results showed that no significant drug polymer interaction in FTIR studies. Among all the formulations SF3 containing sodium alginate showed 77.18% drug release in 6hrs. Conclusion: Amongst the developed mucoadhesive microspheres, SF3 formulation containing sodium alginate exhibited slow and sustained release in a controlled manner and it is a promising formulation for sustained release of Sumatriptan succinate. Keywords: Mucoadhesive microspheres, Sodium alginate, polyvinyl pyrrolidone, Chitosan, sustained release.


Author(s):  
Koyel Kar ◽  
R. N. Pal ◽  
N. N. Bala

Objective: The major objective of the research work was to design, characterise and evaluate controlled release microspheres of ropinirole hydrochloride by using non-aqueous solvent evaporation technique to facilitate the delivery of the drug at a predetermined rate for a specific period of time.Methods: Ropinirole hydrochloride microspheres were prepared by using different low-density polymers such as eudragit RL 100, eudragit RS 100 and ethylcellulose either alone or in combination with the help of non-aqueous solvent evaporation technique. All the formulated microparticles were subjected to various evaluation parameters such as particle size analysis, micrometric properties, drug entrapment efficiency, percentage drug loading, percentage yield and in vitro drug release study. The compatibility of the drug and polymers was confirmed by physical compatibility study, fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and x-ray diffraction study (XRD). The formation of the most optimized batch of the microsphere (F12) was confirmed by scanning electron microscopy (SEM), DSC, FTIR, and XRD. In vitro drug release study and in vitro drug release kinetics study of the formulated microspheres were also carried out.Results: Drug-polymer compatibility studies performed with the help of FTIR and DSC indicated that there were no interactions. Results revealed that non-aqueous solvent evaporation technique was a suitable technique for the preparation of microspheres as most of the formulations were discrete, free-flowing and spherical in shape with a good yield of 55.67% to 80.09%, percentage drug loading of 35.52% to 94.50% and percentage drug entrapment efficiency of 36.24% to 95.07%. Different drug-polymer ratios, as well as the combination of polymers, played a significant role in the variation of over-all characteristics of formulations. Based on the data of various evaluation parameters such as particle size analysis, percentage drug loading, percentage drug entrapment, percentage yield, rheological studies and in vitro drug release characteristics, formulation F12 was found to fulfil the criteria of ideal controlled release drug delivery system. F12 showed controlled release till the 14th hour (97.99%) and its in vitro release kinetics was best explained by zero-order kinetics and followed Korsemeyer-Pappas model (Non-Fickian mechanism). SEM of F12 revealed the formation of spherical structures. The FTIR study of F12 confirmed the stable nature of ropinirole in the drug-loaded microspheres. DSC and XRD patterns showed that ropinirole hydrochloride was dispersed at the molecular level in the polymer matrix.Conclusion: The controlled release microparticles were successfully prepared and from this study, it was concluded that the developed microspheres of ropinirole hydrochloride can be used for controlled drug release to improve the bioavailability and patient compliance and to maintain a constant drug level in the blood target tissue by releasing the drug in zero order pattern.


Author(s):  
Roshan K Pawar ◽  
Kalaiselvan S ◽  
Balamurugan K

The intention of this current study is to intensify the bioavailability of drugs which have lower bioavailability (<20 %) like Lovastatin in the form of NLC carrier and also to optimize the formulation to select perfect variables for the formulation. The Nanostructures lipid carrier was formulated using Hot Homogenization technique with some optimization by utilizing 23 factorial design with the heal of response like in-vitro drug release, % Entrapment Efϑiciency (EE%), % drug Content (%DC), Zeta potential (Zp), Polydispersity Index (PI) and Particle Size (PS) for 12 hours. The kinetic studies of in-vitro drug release was performed and the parameters of the drug in different kinetic models like higuchi kinetic, zero order, ϑirst order, peppas models were evaluated. Invitro release kinetics studies show that optimized formulation NLC (N3) obeys Super Case II kinetics transport mechanism i.e., release of drug through reduction of attractive forces between Lipid chains and Zero order release kinetics for controlled drug delivery. Hence Nanostructure lipid carrier shows a good control and predetermined rate of drug release of Lovastatin. From the obtained outcome, N3 formulation was concluded as an optimized formulation with selected formulation variables like Solid Lipid: Liquid Lipid ratio (6:4), Span 80 as Surfactant (1%) and process variables like homogenization Speed as 5000 Rotations per minute for 15 mins.><20 %) like Lovastatin in the form of NLC carrier and also to optimize the formulation to select perfect variables for the formulation. The Nanostructures lipid carrier was formulated using Hot Homogenization technique with some optimization by utilizing 23 factorial design with the heal of response like in-vitro drug release, % Entrapment Efficiency (EE%), % drug Content (%DC), Zeta potential (Zp), Polydispersity Index (PI) and Particle Size (PS) for 12 hours. The kinetic studies of in-vitro drug release was performed and the parameters of the drug in different kinetic models like higuchi kinetic, zero order, first order, peppas models were evaluated. Invitro release kinetics studies show that optimized formulation NLC (N3) obeys Super Case II kinetics transport mechanism i.e., release of drug through reduction of attractive forces between Lipid chains and Zero order release kinetics for controlled drug delivery. Hence Nanostructure lipid carrier shows a good control and predetermined rate of drug release of Lovastatin. From the obtained outcome, N3 formulation was concluded as an optimized formulation with selected formulation variables like Solid Lipid: Liquid Lipid ratio (6:4), Span 80 as Surfactant (1%) and process variables like homogenization Speed as 5000 Rotations per minute for 15 mins.


Author(s):  
VENKATA RAMANA REDDY K. ◽  
NAGABHUSHANAM M. V. ◽  
PAMULA REDDY B. ◽  
RAVINDAR NAIK E.

Objective: The aim of the present work was to prepare and examine drug release of the oral controlled release microbeads using different curing agents by emulsification internal ionic gelation technique. Methods: Cross-linked alginate microbeads were prepared with different cross linking agents by using mucoadhesive properties. The formation and compatibility of microbeads were confirmed by compatibility studies. Prepared microbeads evaluated for encapsulated efficiency, micromeritic properties, drug loading, in vitro wash off studies, in vitro dissolution studies, drug release kinetics and stability studies Results: The in vitro drug release was influenced by both type of curing agents and type of polymers and no significant changes in characterization parameters was observed after 3 mo stability studies. The sustained release profile of optimized batch was found to be 99.66±0.18% in comparison to pure drug profile of 28.64±0.02% at 12 h release study. Results of both wash-off and in vitro studies suggests that batch (SF2) prepared with aluminium chloride has shown better mucoadhesive property. Drug release of optimized batch follows zero order with non fickian mechanism according to Korsmeyer-Peppas equation. Conclusion: The data suggest the use of simvastatin mucoadhesive cross linked microbeads to offer the potential for oral controlled drug delivery with improved gastric retention and capable to provide sustained drug release by using cross linking agents.


Author(s):  
Taraka Sunil Kumar K ◽  
M. Mohan Varma ◽  
Ravi Prakash P

Solid-lipid nanoparticles (SLNs) are an alternative carrier system used for loading the drug for targeting, improving the bioavailability by increasing its solubility, and protecting the drug from presystemic metabolism. The avoidance of presystemic metabolism is due to the nanometric size range so that the liver cannot uptake the drug from the delivery system and is not metabolized by the liver. Bortezomib is an anti-cancer drug. Due to its poor oral bioavailability, presystemic metabolism and decreased half-life, it was chosen to formulate as the SLN system with the use of a 3-factor, 3-level Box–Behnken design, by hot homogenization followed by an ultrasonication method. Trimyristin (Dynasan-114), tripalmitin (Dynasan 116) and tristearin (Dynasan-118) were used as lipids and based on the results from the initial studies tripalmitin (Dynasan116) was selected as the lipid for the further studies along with phosphatidylcholine as surfactant and Poloxamer 188 as stabilizer. The optimized formulation (F1) was obtained with minimum particle size (204 nm), maximum entrapment efficiency (70.24) and drug loading (21.24). The optimised batches were further investigated by FTIR, DSC, XRD, SEM and stability. In vitro release studies showed that maximum cumulative drug release was obtained for F1 (99.74%). The optimized formulation Bortezomib followed zero-order release kinetics with a strong correlation coefficient (R2= 0.9994). The nanoformulation prepared under optimized conditions is in concurrence with the expected results. It is concluded that the SLN formulation can be used as a potential carrier for the effective delivery of Bortezomib.


2007 ◽  
Vol 57 (4) ◽  
pp. 469-477 ◽  
Author(s):  
Romi Barat ◽  
Anegundha Srinatha ◽  
Jayanta Pandit ◽  
Shampa Anupurba ◽  
Neelam Mittal

Chitosan inserts for periodontitis: Influence of drug loading, plasticizer and crosslinking onin vitrometronidazole releaseChitosan based metronidazole (MZ) inserts were fabricated by the casting method and characterized with respect to mass and thickness uniformity, metronidazole loading andin vitrometronidazole release kinetics. The fabricated inserts exhibited satisfactory physical characteristics. The mass of inserts was in the range of 5.63 ± 0.42 to 6.04 ± 0.89 mg. The thickness ranged from 0.46 ± 0.06 to 0.49 ± 0.08 mm. Metronidazole loading was in the range of 0.98 ± 0.09 to 1.07 ± 0.07 mg except for batch CM3 with MZ loading of 2.01 ± 0.08 mg. The inserts exhibited an initial burst release at the end of 24 h, irrespective of the drug to polymer ratio, plasticizer content or cross-linking. However, further drug release was sustained over the next 6 days. Cross-linking with 10% (m/m) of glutaraldehyde inhibited the burst release by ~30% and increased the mean dissolution time (MDT) from 0.67 to 8.59 days. The decrease in drug release was a result of reduced permeability of chitosan due to cross-linking.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Cuixia Wen ◽  
Yun Zhou ◽  
Chong Zhou ◽  
Yifan Zhang ◽  
Xiang Hu ◽  
...  

Curcumin, the principal polyphenolic curcuminoid, has been reported in numerous studies for its antitumor effect in a series of cancers. It is also reported that curcumin possesses radiosensitization effect in some cancers. However, the poor solubility and unsatisfied bioavailability of curcumin significantly undermine its potential application. Here we prepared curcumin loaded nanoparticles by employing PVP-PCL as drug carrier. Characterization studies indicated the satisfied drug loading efficiency and a sustained in vitro release pattern. Quantification uptake study showed that the uptake efficiency of Cum-NPs by lung cancer cells was time- and dose-dependent. In vitro anticancer study demonstrated the superior cytotoxic effect of Cum-NPs with stronger apoptotic induction over free Cum. Most importantly, there is almost no report on the radiosensitization effect of curcumin loaded nanoparticles. Here, Cum-NPs led to more inhibition of the colony forming ability of A549 cells as compared to the equivalent concentration of free Cum as shown in clonogenic assay. Furthermore, Cum-NPs are much more effective in enhancing the tumor growth inhibitory effect of radiation therapy in a A549 xenograft model. Therefore, results from the current study seem to be the first report on the radiosensitization effect of Cum-NPs and paved the way for a curcumin nanodrug delivery system as a potential radiation adjuvant.


Sign in / Sign up

Export Citation Format

Share Document