Drosophila melanogaster a versatile model of Parkinson’s Disease

Author(s):  
Falaq Naz ◽  
Yasir Hasan Siddique

: Parkinson's Disease (PD) is one of the most prevalent, recurrent and life-threatening neurodegenerative disease. However, the precise mechanism underlying this disease is not yet clearly understood. For understanding the pathogenesis of PD, it is essential to identify the symptoms along with the novel biological markers and to develop strategies which could lead towards the development of effective therapy. PD is associated with Lewy bodies (LBs) formation and the loss of dopaminergic neurons in the substantia nigra pars compacta of mid brain region. For the improvement in treatment strategiesas well as understanding the pathophysiology of the PD in number ofanimal models have been introduced that can recapitulatethe pathophysiology, motor and non-motor symptoms of PD. In contrast to mammalian models like rodents, mice and monkey, Drosophila is easy to handle as well as it maintenance cost is low.Due to the anatomical differencesin the brain and other major organsof human and fly,the issues of standardizing the methods or experiments to analyze behavioral aspects (walking, writhing, eating and sleeping) are difficult in flies. Thepresent review highlights the studies carried out for PD since 2000, using Drosophila melanogaster.

2022 ◽  
Vol 13 ◽  
Author(s):  
Emily M. Klann ◽  
Upuli Dissanayake ◽  
Anjela Gurrala ◽  
Matthew Farrer ◽  
Aparna Wagle Shukla ◽  
...  

Parkinson’s disease is a chronic neurodegenerative disease characterized by the accumulation of misfolded alpha-synuclein protein (Lewy bodies) in dopaminergic neurons of the substantia nigra and other related circuitry, which contribute to the development of both motor (bradykinesia, tremors, stiffness, abnormal gait) and non-motor symptoms (gastrointestinal issues, urinogenital complications, olfaction dysfunction, cognitive impairment). Despite tremendous progress in the field, the exact pathways and mechanisms responsible for the initiation and progression of this disease remain unclear. However, recent research suggests a potential relationship between the commensal gut bacteria and the brain capable of influencing neurodevelopment, brain function and health. This bidirectional communication is often referred to as the microbiome–gut–brain axis. Accumulating evidence suggests that the onset of non-motor symptoms, such as gastrointestinal manifestations, often precede the onset of motor symptoms and disease diagnosis, lending support to the potential role that the microbiome–gut–brain axis might play in the underlying pathological mechanisms of Parkinson’s disease. This review will provide an overview of and critically discuss the current knowledge of the relationship between the gut microbiota and Parkinson’s disease. We will discuss the role of α-synuclein in non-motor disease pathology, proposed pathways constituting the connection between the gut microbiome and the brain, existing evidence related to pre- and probiotic interventions. Finally, we will highlight the potential opportunity for the development of novel preventative measures and therapeutic options that could target the microbiome–gut–brain axis in the context of Parkinson’s disease.


2020 ◽  
pp. 107385842094318
Author(s):  
Huimin Zheng ◽  
Changhe Shi ◽  
Haiyang Luo ◽  
Liyuan Fan ◽  
Zhihua Yang ◽  
...  

Parkinson’s disease (PD) is one of the most common neurodegenerative diseases, defined as motor and non-motor symptoms associated with the loss of dopaminergic neurons and a decreased release of dopamine (DA). Currently, PD patients are believed to have a neuropathological basis denoted by the presence of Lewy bodies (LBs) or Lewy neurites (LNs), which mostly comprise α-synuclein (α-syn) inclusions. Remarkably, there is a growing body of evidence indicating that the inclusions undergo template-directed aggregation and propagation via template-directed among the brain and peripheral organs, mainly in a prion-like manner. Interestingly, some studies reported that an integral loop was reminiscent of the mechanism of Parkinson’s disease, denoting that α-syn as prionoid was transmitted from the periphery to the brain via specific pathways. Also the systematic life cycle of α-syn in the cellular level is illustrated. In this review, we critically assess landmark evidence in the field of Parkinson’s disease with a focus on the genesis and prion-like propagation of the α-syn pathology. The anatomical and cell-to-cell evidences are discussed to depict the theory behind the propagation and transferred pathways. Furthermore, we highlight effective therapeutic perspectives and clinical trials targeting prion-like mechanisms. Major controversies surrounding this topic are also discussed.


2016 ◽  
Vol 10 (1) ◽  
pp. 42-58 ◽  
Author(s):  
Mohsin H.K. Roshan ◽  
Amos Tambo ◽  
Nikolai P. Pace

Parkinson’s disease [PD] is the second most common neurodegenerative disorder after Alzheimer’s disease, affecting 1% of the population over the age of 55. The underlying neuropathology seen in PD is characterised by progressive loss of dopaminergic neurons in the substantia nigra pars compacta with the presence of Lewy bodies. The Lewy bodies are composed of aggregates of α-synuclein. The motor manifestations of PD include a resting tremor, bradykinesia, and muscle rigidity. Currently there is no cure for PD and motor symptoms are treated with a number of drugs including levodopa [L-dopa]. These drugs do not delay progression of the disease and often provide only temporary relief. Their use is often accompanied by severe adverse effects. Emerging evidence from bothin vivoandin vitrostudies suggests that caffeine may reduce parkinsonian motor symptoms by antagonising the adenosine A2Areceptor, which is predominately expressed in the basal ganglia. It is hypothesised that caffeine may increase the excitatory activity in local areas by inhibiting the astrocytic inflammatory processes but evidence remains inconclusive. In addition, the co-administration of caffeine with currently available PD drugs helps to reduce drug tolerance, suggesting that caffeine may be used as an adjuvant in treating PD. In conclusion, caffeine may have a wide range of therapeutic effects which are yet to be explored, and therefore warrants further investigation in randomized clinical trials.


2021 ◽  
Vol 44 (1) ◽  
pp. 87-108
Author(s):  
Gabriel E. Vázquez-Vélez ◽  
Huda Y. Zoghbi

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by degeneration of the substantia nigra pars compacta and by accumulation of α-synuclein in Lewy bodies. PD is caused by a combination of environmental factors and genetic variants. These variants range from highly penetrant Mendelian alleles to alleles that only modestly increase disease risk. Here, we review what is known about the genetics of PD. We also describe how PD genetics have solidified the role of endosomal, lysosomal, and mitochondrial dysfunction in PD pathophysiology. Finally, we highlight how all three pathways are affected by α-synuclein and how this knowledge may be harnessed for the development of disease-modifying therapeutics.


Author(s):  
John V. Hindle ◽  
Sion Jones ◽  
Glesni Davies

Parkinson’s disease (PD) is a progressive neurodegenerative condition characterized clinically by fatiguable bradykinesia, rigidity and tremor and pathologically by deposition of Lewy bodies and cell loss in the substantia nigra and other brain regions. Parkinsonism is the term used to describe the clinical features of conditions resembling PD. Their management requires specialist assessment and a multidisciplinary approach. Levodopa remains the mainstay of treatment for PD. Although other treatments are used, older people are more sensitive to their side effects. Non-motor symptoms, particularly neuropsychiatric problems, significantly impact quality of life and need special consideration in older people. Towards the later stage of the disease, management can be complex, and should involve advanced care planning.


2018 ◽  
Vol 19 (11) ◽  
pp. 3573 ◽  
Author(s):  
Małgorzata Kujawska ◽  
Jadwiga Jodynis-Liebert

Parkinson’s disease (PD) is a neurodegenerative disorder resulting from degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). PD is characterized by motor dysfunctions as well as gastrointestinal symptoms and mental impairment. The pathological hallmark of PD is an accumulation of misfolded α-synuclein aggregates within the brain. The etiology of PD and related synucleinopathy is poorly understood, but recently, the hypothesis that α-synuclein pathology spreads in a prion-like fashion originating in the gut has gained much scientific attention. A crucial clue was the appearance of constipation before the onset of motor symptoms, gut dysbiosis and synucleinopathy in PD patients. Another line of evidence, demonstrating accumulation of α-synuclein within the peripheral autonomic nervous system (PANS), including the enteric nervous system (ENS), and the dorsal motor nucleus of the vagus (DMV) support the concept that α-synuclein can spread from the ENS to the brain by the vagus nerve. The decreased risk of PD following truncal vagotomy supports this. The convincing evidence of the prion-like behavior of α-synuclein came from postmortem observations that pathological α-synuclein inclusions appeared in healthy grafted neurons. In this review, we summarize the available data from human subjects’ research and animal experiments, which seem to be the most suggestive for explaining the hypotheses.


2019 ◽  
Vol 116 (36) ◽  
pp. 17963-17969 ◽  
Author(s):  
Katsuya Araki ◽  
Naoto Yagi ◽  
Koki Aoyama ◽  
Chi-Jing Choong ◽  
Hideki Hayakawa ◽  
...  

Many neurodegenerative diseases are characterized by the accumulation of abnormal protein aggregates in the brain. In Parkinson’s disease (PD), α-synuclein (α-syn) forms such aggregates called Lewy bodies (LBs). Recently, it has been reported that aggregates of α-syn with a cross-β structure are capable of propagating within the brain in a prionlike manner. However, the presence of cross-β sheet-rich aggregates in LBs has not been experimentally demonstrated so far. Here, we examined LBs in thin sections of autopsy brains of patients with PD using microbeam X-ray diffraction (XRD) and found that some of them gave a diffraction pattern typical of a cross-β structure. This result confirms that LBs in the brain of PD patients contain amyloid fibrils with a cross-β structure and supports the validity of in vitro propagation experiments using artificially formed amyloid fibrils of α-syn. Notably, our finding supports the concept that PD is a type of amyloidosis, a disease featuring the accumulation of amyloid fibrils of α-syn.


2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Ruixin Yang ◽  
Guodong Gao ◽  
Zixu Mao ◽  
Qian Yang

Parkinson’s disease (PD), a complex neurodegenerative disorder, is pathologically characterized by the formation of Lewy bodies and loss of dopaminergic neurons in the substantia nigra pars compacta (SNc). Mitochondrial dysfunction is considered to be one of the most important causative mechanisms. In addition, dysfunction of chaperone-mediated autophagy (CMA), one of the lysosomal proteolytic pathways, has been shown to play an important role in the pathogenesis of PD. An exciting and important development is recent finding that CMA and mitochondrial quality control may be linked. This review summarizes the studies revealing the link between autophagy and mitochondrial function. Discussions are focused on the connections between CMA and mitochondrial failure and on the role of MEF2D, a neuronal survival factor, in mediating the regulation of mitochondria in the context of CMA. These new findings highlight the need to further explore the possibility of targeting the MEF2D-mitochondria-CMA network in both understanding the PD pathogenesis and developing novel therapeutic strategies.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Peng Wang ◽  
Xin Li ◽  
Xuran Li ◽  
Weiwei Yang ◽  
Shun Yu

A pathological hallmark of Parkinson’s disease (PD) is formation of Lewy bodies in neurons of the brain. This has been attributed to the spread of α-synuclein (α-syn) aggregates, which involves release of α-syn from a neuron and its reuptake by a neighboring neuron. We found that treatment with plasma from PD patients induced more α-syn phosphorylation and oligomerization than plasma from normal subjects (NS). Compared with NS plasma, PD plasma added to primary neuron cultures caused more cell death in the presence of extracellular α-syn. This was supported by the observations that phosphorylated α-syn oligomers entered neurons, rapidly increased accumulated thioflavin S-positive inclusions, and induced a series of metabolic changes that included activation of polo-like kinase 2, inhibition of glucocerebrosidase and protein phosphatase 2A, and reduction of ceramide levels, all of which have been shown to promote α-syn phosphorylation and aggregation. We also analyzed neurotoxicity of α-syn oligomers relative to plasma from different patients. Neurotoxicity was not related to age or gender of the patients. However, neurotoxicity was positively correlated with H&Y staging score. The modification in the plasma may promote spreading of α-syn aggregates via an alternative pathway and accelerate progression of PD.


2021 ◽  
Vol 15 ◽  
Author(s):  
Noritaka Wakasugi ◽  
Takashi Hanakawa

Alzheimer’s disease (AD) is the leading cause of dementia due to neurodegeneration and is characterized by extracellular senile plaques composed of amyloid β1–42 (Aβ) as well as intracellular neurofibrillary tangles consisting of phosphorylated tau (p-tau). Dementia with Lewy bodies constitutes a continuous spectrum with Parkinson’s disease, collectively termed Lewy body disease (LBD). LBD is characterized by intracellular Lewy bodies containing α-synuclein (α-syn). The core clinical features of AD and LBD spectra are distinct, but the two spectra share common cognitive and behavioral symptoms. The accumulation of pathological proteins, which acquire pathogenicity through conformational changes, has long been investigated on a protein-by-protein basis. However, recent evidence suggests that interactions among these molecules may be critical to pathogenesis. For example, Aβ/tau promotes α-syn pathology, and α-syn modulates p-tau pathology. Furthermore, clinical evidence suggests that these interactions may explain the overlapping pathology between AD and LBD in molecular imaging and post-mortem studies. Additionally, a recent hypothesis points to a common mechanism of prion-like progression of these pathological proteins, via neural circuits, in both AD and LBD. This suggests a need for understanding connectomics and their alterations in AD and LBD from both pathological and functional perspectives. In AD, reduced connectivity in the default mode network is considered a hallmark of the disease. In LBD, previous studies have emphasized abnormalities in the basal ganglia and sensorimotor networks; however, these account for movement disorders only. Knowledge about network abnormalities common to AD and LBD is scarce because few previous neuroimaging studies investigated AD and LBD as a comprehensive cohort. In this paper, we review research on the distribution and interactions of pathological proteins in the brain in AD and LBD, after briefly summarizing their clinical and neuropsychological manifestations. We also describe the brain functional and connectivity changes following abnormal protein accumulation in AD and LBD. Finally, we argue for the necessity of neuroimaging studies that examine AD and LBD cases as a continuous spectrum especially from the proteinopathy and neurocircuitopathy viewpoints. The findings from such a unified AD and Parkinson’s disease (PD) cohort study should provide a new comprehensive perspective and key data for guiding disease modification therapies targeting the pathological proteins in AD and LBD.


Sign in / Sign up

Export Citation Format

Share Document