Parkinson's Disease Genetics and Pathophysiology

2021 ◽  
Vol 44 (1) ◽  
pp. 87-108
Author(s):  
Gabriel E. Vázquez-Vélez ◽  
Huda Y. Zoghbi

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by degeneration of the substantia nigra pars compacta and by accumulation of α-synuclein in Lewy bodies. PD is caused by a combination of environmental factors and genetic variants. These variants range from highly penetrant Mendelian alleles to alleles that only modestly increase disease risk. Here, we review what is known about the genetics of PD. We also describe how PD genetics have solidified the role of endosomal, lysosomal, and mitochondrial dysfunction in PD pathophysiology. Finally, we highlight how all three pathways are affected by α-synuclein and how this knowledge may be harnessed for the development of disease-modifying therapeutics.

2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Ruixin Yang ◽  
Guodong Gao ◽  
Zixu Mao ◽  
Qian Yang

Parkinson’s disease (PD), a complex neurodegenerative disorder, is pathologically characterized by the formation of Lewy bodies and loss of dopaminergic neurons in the substantia nigra pars compacta (SNc). Mitochondrial dysfunction is considered to be one of the most important causative mechanisms. In addition, dysfunction of chaperone-mediated autophagy (CMA), one of the lysosomal proteolytic pathways, has been shown to play an important role in the pathogenesis of PD. An exciting and important development is recent finding that CMA and mitochondrial quality control may be linked. This review summarizes the studies revealing the link between autophagy and mitochondrial function. Discussions are focused on the connections between CMA and mitochondrial failure and on the role of MEF2D, a neuronal survival factor, in mediating the regulation of mitochondria in the context of CMA. These new findings highlight the need to further explore the possibility of targeting the MEF2D-mitochondria-CMA network in both understanding the PD pathogenesis and developing novel therapeutic strategies.


2001 ◽  
Vol 1 ◽  
pp. 207-208 ◽  
Author(s):  
Todd B. Sherer ◽  
Ranjita Betarbet ◽  
J. Timothy Greenamyre

Parkinson’s disease (PD), a common neurodegenerative disorder affects approximately 1% of the population over 65. PD is a late-onset progressive motor disease characterized by tremor, rigidity (stiffness), and bradykinesia (slowness of movement). The hallmark of PD is the selective death of dopamine-containing neurons in the substantia nigra pars compacta which send their projections to the striatum and the presence of cytoplasmic aggregates called Lewy bodies [1-2]. Most cases of PD are sporadic but rare cases are familial, with earlier onset. The underlying mechanisms and causes of PD still remain unclear.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Liang Zhao ◽  
Zhiqin Wang

Parkinson’s disease (PD) is the second most common neurodegenerative disorder. Its neuropathological hallmarks include neuronal loss in the substantia nigra pars compacta (SNpc) and the presence of Lewy bodies containing aggregates of α-synuclein (α-syn). An imbalance between the rates of α-syn synthesis, aggregation, and clearance can result in abnormal α-syn levels and contribute to the pathogenesis of PD. MicroRNAs (miRNAs) are endogenous single-stranded noncoding RNAs (∼22 nucleotides) that have recently emerged as key posttranscriptional regulators of gene expression. In this review, we summarize the functions of miRNAs that directly target α-syn. We also review miRNAs that indirectly impact α-syn levels or toxicity through different pathways, including those involved in the clearance of α-syn and neuroinflammation.


2016 ◽  
Vol 10 (1) ◽  
pp. 42-58 ◽  
Author(s):  
Mohsin H.K. Roshan ◽  
Amos Tambo ◽  
Nikolai P. Pace

Parkinson’s disease [PD] is the second most common neurodegenerative disorder after Alzheimer’s disease, affecting 1% of the population over the age of 55. The underlying neuropathology seen in PD is characterised by progressive loss of dopaminergic neurons in the substantia nigra pars compacta with the presence of Lewy bodies. The Lewy bodies are composed of aggregates of α-synuclein. The motor manifestations of PD include a resting tremor, bradykinesia, and muscle rigidity. Currently there is no cure for PD and motor symptoms are treated with a number of drugs including levodopa [L-dopa]. These drugs do not delay progression of the disease and often provide only temporary relief. Their use is often accompanied by severe adverse effects. Emerging evidence from bothin vivoandin vitrostudies suggests that caffeine may reduce parkinsonian motor symptoms by antagonising the adenosine A2Areceptor, which is predominately expressed in the basal ganglia. It is hypothesised that caffeine may increase the excitatory activity in local areas by inhibiting the astrocytic inflammatory processes but evidence remains inconclusive. In addition, the co-administration of caffeine with currently available PD drugs helps to reduce drug tolerance, suggesting that caffeine may be used as an adjuvant in treating PD. In conclusion, caffeine may have a wide range of therapeutic effects which are yet to be explored, and therefore warrants further investigation in randomized clinical trials.


2021 ◽  
Author(s):  
Kajsa Brolin ◽  
Sara Bandres Ciga ◽  
Hampton Leonard ◽  
Mary B Makarious ◽  
Cornelis Blauwendraat ◽  
...  

Parkinson's disease (PD) is a complex neurodegenerative disorder in which both rare and common genetic variants contribute to disease risk. Multiple genes have been reported to be linked to monogenic PD, but these only explain a fraction of the observed familial aggregation. Rare variants in RIC3 have been suggested to be associated with PD in the Indian population. However, replication studies yielded inconsistent results. We further investigate the role of RIC3 variants in PD in European cohorts using individual-level genotyping data from 14,671 PD patients and 17,667 controls, as well as whole-genome sequencing data from 1,615 patients and 961 controls. We also investigated RIC3 using summary statistics from a Latin American cohort of 1,481 individuals, and from a cohort of 31,575 individuals of East Asian ancestry. We did not identify any association between RIC3 and PD in any of the cohorts. However, more studies of rare variants in non-European ancestry populations, in particular South Asian populations, are necessary to further evaluate the world-wide role of RIC3 in PD etiology.


Biomedicines ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 197 ◽  
Author(s):  
Lisa M. Barnhill ◽  
Hiromi Murata ◽  
Jeff M. Bronstein

Parkinson’s disease is a common neurodegenerative disorder leading to severe disability. The clinical features reflect progressive neuronal loss, especially involving the dopaminergic system. The causes of Parkinson’s disease are slowly being uncovered and include both genetic and environmental insults. Zebrafish have been a valuable tool in modeling various aspects of human disease. Here, we review studies utilizing zebrafish to investigate both genetic and toxin causes of Parkinson’s disease. They have provided important insights into disease mechanisms and will be of great value in the search for disease-modifying therapies.


2021 ◽  
Vol 13 ◽  
Author(s):  
Tingting Du ◽  
Le Wang ◽  
Weijin Liu ◽  
Guanyu Zhu ◽  
Yingchuan Chen ◽  
...  

Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by the presence of α-synuclein (α-Syn)-rich Lewy bodies (LBs) and the preferential loss of dopaminergic (DA) neurons in the substantia nigra (SN) pars compacta (SNpc). However, the widespread involvement of other central nervous systems (CNS) structures and peripheral tissues is now widely documented. The onset of the molecular and cellular neuropathology of PD likely occurs decades before the onset of the motor symptoms characteristic of PD, so early diagnosis of PD and adequate tracking of disease progression could significantly improve outcomes for patients. Because the clinical diagnosis of PD is challenging, misdiagnosis is common, which highlights the need for disease-specific and early-stage biomarkers. This review article aims to summarize useful biomarkers for the diagnosis of PD, as well as the biomarkers used to monitor disease progression. This review article describes the role of α-Syn in PD and how it could potentially be used as a biomarker for PD. Also, preclinical and clinical investigations encompassing genetics, immunology, fluid and tissue, imaging, as well as neurophysiology biomarkers are discussed. Knowledge of the novel biomarkers for preclinical detection and clinical evaluation will contribute to a deeper understanding of the disease mechanism, which should more effectively guide clinical applications.


2018 ◽  
Vol 2 (4) ◽  
Author(s):  
Miho Araki ◽  
Genta Ito ◽  
Taisuke Tomita

Leucine-rich repeat kinase 2 (LRRK2) encodes a 2527-amino acid (aa) protein composed of multiple functional domains, including a Ras of complex proteins (ROC)-type GTP-binding domain, a carboxyl terminal of ROC (COR) domain, a serine/threonine protein kinase domain, and several repeat domains. LRRK2 is genetically involved in the pathogenesis of both sporadic and familial Parkinson’s disease (FPD). Parkinson’s disease (PD) is the second most common neurodegenerative disorder, manifesting progressive motor dysfunction. PD is pathologically characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta, and the presence of intracellular inclusion bodies called Lewy bodies (LB) in the remaining neurons. As the most frequent PD-causing mutation in LRRK2, G2019S, increases the kinase activity of LRRK2, an abnormal increase in LRRK2 kinase activity is believed to contribute to PD pathology; however, the precise biological functions of LRRK2 involved in PD pathogenesis remain unknown. Although biochemical studies have discovered several substrate proteins of LRRK2 including Rab GTPases and tau, little is known about whether excess phosphorylation of these substrates is the cause of the neurodegeneration in PD. In this review, we summarize latest findings regarding the physiological and pathological functions of LRRK2, and discuss the possible molecular mechanisms of neurodegeneration caused by LRRK2 and its substrates.


2020 ◽  
Vol 21 (5) ◽  
pp. 509-518 ◽  
Author(s):  
Omid Reza Tamtaji ◽  
Tooba Hadinezhad ◽  
Maryam Fallah ◽  
Arash Rezaei Shahmirzadi ◽  
Mohsen Taghizadeh ◽  
...  

Parkinson’s disease (PD) is a chronic and progressive neurodegenerative disorder characterized by the progressive death of dopaminergic neurons in the substantia nigra pars compacta (SNc). PD is a multifactorial disorder, with several different factors being suggested to play a synergistic pathophysiological role, including oxidative stress, autophagy, underlying pro-inflammatory events and neurotransmitters abnormalities. Overall, PD can be viewed as the product of a complex interaction of environmental factors acting on a given genetic background. The importance of this subject has gained more attention to discover novel therapies to prevent as well as treat PD. According to previous research, drugs used to treat PD have indicated significant limitations. Therefore, the role of flavonoids has been extensively studied in PD treatment. Quercetin, a plant flavonol from the flavonoid group, has been considered as a supplemental therapy for PD. Quercetin has pharmacological functions in PD by controlling different molecular pathways. Although few studies intended to evaluate the basis for the use of quercetin in the context of PD have been conducted so far, at present, there is very little evidence available addressing the underlying mechanisms of action. Various principal aspects of these treatment procedures remain unknown. Here, currently existing knowledge supporting the use of quercetin for the clinical management of PD has been reviewed.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1121 ◽  
Author(s):  
Maxime W.C. Rousseaux ◽  
Joshua M. Shulman ◽  
Joseph Jankovic

Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s disease, affecting over 10 million individuals worldwide. While numerous effective symptomatic treatments are currently available, no curative or disease-modifying therapies exist. An integrated, comprehensive understanding of PD pathogenic mechanisms will likely address this unmet clinical need. Here, we highlight recent progress in PD research with an emphasis on promising translational findings, including (i) advances in our understanding of disease susceptibility, (ii) improved knowledge of cellular dysfunction, and (iii) insights into mechanisms of spread and propagation of PD pathology. We emphasize connections between these previously disparate strands of PD research and the development of an emerging systems-level understanding that will enable the next generation of PD therapeutics.


Sign in / Sign up

Export Citation Format

Share Document