Neuroregenerative activity of the dipeptide mimetic of Brain Derived Neurotrophic Factor GSB-106 under experimental ischemic stroke

Author(s):  
Tatiana A. Gudasheva ◽  
Polina Yu. Povarnina ◽  
Tatiana A. Antipova ◽  
Sergey V. Kruglov ◽  
Ilya O. Logvinov ◽  
...  

Background: A dimeric dipeptide mimetic of the BDNF loop 4, bis(N-monosuccinyl-L-seryl-L-lysine) hexamethylenediamide (GSB-106), which activates TrkB, PI3K/AKT, MAPK/ERK and PLC-γ1 was created at the V.V. Zakusov Research Institute of Pharmacology. GSB-106 showed neuroprotective activity in vitro and in vivo at systemic administration. Objective: In this work, we studied the GSB-106 effect on the cerebral infarct volume, as well as on neurogenesis and synaptogenesis under experimental ischemic stroke, induced by intravascular occlusion of the middle cerebral artery in rats. Methods: GSB-106 was administered i.p. in a dose of 0.1 mg/kg 24 h after surgery and then once a day, with the end of administration on the day 6 after surgery. On the day 7 brain samples were collected for morphometric and biochemical (Western-blot) analysis. Results: It was established that GSB-106 reduced the brain damage volume by 24%, restores impaired neurogenesis and/or gliogenesis (by Ki-67) in the hippocampus and in the striatum and completely restored the reduced immunoreactivity to synaptic markers synaptophysin and PSD-95 in the striatum. Conclusions: Thus, the dimer dipeptide BDNF mimetic GSB-106 exhibits neuroregenerative properties at clinically relevant time window (24 h) in a model of ischemic stroke presumably due to stimulation of neurogenesis (and/or gliogenesis) and synaptogenesis.

2018 ◽  
Vol 39 (12) ◽  
pp. 2406-2418 ◽  
Author(s):  
Su Jing Chan ◽  
Hui Zhao ◽  
Kazuhide Hayakawa ◽  
Chou Chai ◽  
Chong Teik Tan ◽  
...  

Modulator of apoptosis 1 (MOAP-1) is a Bax-associating protein highly enriched in the brain. In this study, we examined the role of MOAP-1 in promoting ischemic injuries following a stroke by investigating the consequences of MOAP-1 overexpression or deficiency in in vitro and in vivo models of ischemic stroke. MOAP-1 overexpressing SH-SY5Y cells showed significantly lower cell viability following oxygen and glucose deprivation (OGD) treatment when compared to control cells. Consistently, MOAP-1−/− primary cortical neurons were observed to be more resistant against OGD treatment than the MOAP-1+/+ primary neurons. In the mouse transient middle cerebral artery occlusion (tMCAO) model, ischemia triggered MOAP-1/Bax association, suggested activation of the MOAP-1-dependent apoptotic cascade. MOAP-1−/− mice were found to exhibit reduced neuronal loss and smaller infarct volume 24 h after tMCAO when compared to MOAP-1+/+ mice. Correspondingly, MOAP-1−/− mice also showed better integrity of neurological functions as demonstrated by their performance in the rotarod test. Therefore, both in vitro and in vivo data presented strongly support the conclusion that MOAP-1 is an important apoptotic modulator in ischemic injury. These results may suggest that a reduction of MOAP-1 function in the brain could be a potential therapeutic approach in the treatment of acute stroke.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Xinjing Liu ◽  
Ruiyao Hu ◽  
Lulu Pei ◽  
Yuming Xu ◽  
Bo Song

Background: The interleukin (IL)-33 could promote proliferation of regulatory T lymphocytes (Tregs) which are negatively related with brain damage after ischemic stroke. How IL-33 works on Tregs after stroke is unclear. The purpose of this study was to investigate the role of IL-33 for Tregs-mediated neuroprotection and further expounded the mechanisms of protection in mice. Methods: In vitro study, primary mice neuronal cells were subjected to 3h oxygen-glucose deprivation (OGD). The vehicle or drug conditioned Tregs were applied to neurons at the time of induction of hypoxia respectively. Neuronal apoptosis, Tregs related cytokines were measured by MTT assay, Western blotting and enzyme-linked immune-sorbent assay (ELISA). In vivo study, Tregs were depleted by intraperitoneal administration of anti-CD25Ab. Intraperitoneal injection of IL-33 immediately post 60 min transient middle cerebral artery occlusion (tMCAO) modeling. The neurological function test at days 1, 3, 5, 7 and 14 after tMCAO. Infarct volume, Brain edema, cell death, percentage of Tregs and related cytokines were respectively measured by 2,3,5-triphenyltetrazolium chloride or MAP2 staining, dry-wet method, TUNEL staining, flow cytometry and immunofluorescence, Western blotting and ELISA. Results: The supernatant of IL-33-treated Tregs reduced neuronal apoptosis in the OGD model meanwhile elevated the production of Tregs related cytokines IL-10, IL-35 and TGF- β in vitro. Intraperitoneal administration of IL-33 significantly reduced infarct volume and stroke-induced cell death and improved sensorimotor functions. Notably, the protective effect of IL-33 was abolished in mice depleted of Tregs. IL-33 increased CD4+CD25+Foxp3+ Tregs in spleens, blood, and brain in vivo. Yet, ST2 blocking muted these IL-33 activities. Mechanistically, the protection of IL-33 was associated with reduced apoptosis protein and production of Tregs related cytokine. Conclusions: This study elucidated that IL-33 afforded neuroprotection against ischemic brain injury by enhancing ST2-dependent regulatory T-cell expansion and activation, which suggested a promising immune modulatory target for the treatment of stroke.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiang Yao ◽  
Wenping Yang ◽  
Zhendong Ren ◽  
Haoran Zhang ◽  
Dafa Shi ◽  
...  

Objective: The present study explored whether levetiracetam (LEV) could protect against experimental brain ischemia and enhance angiogenesis in rats, and investigated the potential mechanisms in vivo and in vitro.Methods: The middle cerebral artery was occluded for 60 min to induce middle cerebral artery occlusion (MCAO). The Morris water maze was used to measure cognitive ability. The rotation test was used to assess locomotor function. T2-weighted MRI was used to assess infarct volume. The neuronal cells in the cortex area were stained with cresyl purple. The anti-inflammatory effects of LEV on microglia were observed by immunohistochemistry. Enzyme-linked immunosorbent assays (ELISA) were used to measure the production of pro-inflammatory cytokines. Western blotting was used to detect the levels of heat shock protein 70 (HSP70), vascular endothelial growth factor (VEGF), and hypoxia-inducible factor-1α (HIF-1α) in extracts from the ischemic cortex. Flow cytometry was used to observe the effect of LEV on neuronal cell apoptosis.Results: LEV treatment significantly increased the density of the surviving neurons in the cerebral cortex and reduced the infarct size (17.8 ± 3.3% vs. 12.9 ± 1.4%, p < 0.01) after MCAO. Concurrently, the time required to reach the platform for LEV-treated rats was shorter than that in the saline group on day 11 after MCAO (p < 0.01). LEV treatment prolonged the rotarod retention time on day 14 after MCAO (84.5 ± 6.7 s vs. 59.1 ± 6.2 s on day 14 compared with the saline-treated groups, p < 0.01). It also suppressed the activation of microglia and inhibited TNF-α and Il-1β in the ischemic brain (135.6 ± 5.2 pg/ml vs. 255.3 ± 12.5 pg/ml, 18.5 ± 1.3 pg/ml vs. 38.9 ± 2.3 pg/ml on day 14 compared with the saline-treated groups, p < 0.01). LEV treatment resulted in a significant increase in HIF-1α, VEGF, and HSP70 levels in extracts from the ischemic cerebral cortex. At the same time, LEV reduced neuronal cell cytotoxicity and apoptosis induced by an ischemic stroke (p < 0.01).Conclusion: LEV treatment promoted angiogenesis and functional recovery after cerebral ischemia in rats. These effects seem to be mediated through anti-inflammatory and antiapoptotic activities, as well as inducing the expression of HSP70, VEGF, and HIF-1α.


2019 ◽  
Author(s):  
Alberto Perez-Alvarez ◽  
Brenna C. Fearey ◽  
Christian Schulze ◽  
Ryan J. O’Toole ◽  
Benjamien Moeyaert ◽  
...  

ABSTRACTInformation within the brain travels from neuron to neuron across synapses. At any given moment, only a few synapses within billions will be active and are thought to transmit key information about the environment, a behavior being executed or memory being recalled. Here we present SynTagMA, which marks active synapses within a ~2 s time window. Upon violet illumination, the genetically expressed tag converts from green to red fluorescence if bound to calcium. Targeted to presynaptic terminals, preSynTagMA allows discrimination between active and silent axons. Targeted to excitatory postsynapses, postSynTagMA creates a snapshot of synapses active just before photoconversion. To analyze large datasets, we developed an analysis program that automatically identifies and tracks the fluorescence of thousands of individual synapses in tissue. Together, these tools provide a high throughput method for repeatedly mapping active synapses in vitro and in vivo.


2019 ◽  
Author(s):  
Xin-chun Ye ◽  
Qi Hao ◽  
Wei-jing Ma ◽  
Qiu-chen Zhao ◽  
Wei-wei Wang ◽  
...  

Abstract Dendritic cell-associated C-type lectin-1 (Dectin-1) receptor has been reported to be involved in neuroinflammation in Alzheimer's disease and traumatic brain injury. The present study was designed to investigate the role of Dectin-1 and its downstream target spleen tyrosine kinase (Syk) in early brain injury after ischemic stroke using a focal cortex ischemic stroke model. Adult male C57BL/6J mice were subjected to a cerebral focal ischemia model of ischemic stroke. The neurological score, adhesive removal test and foot-fault test were evaluated on days 1, 3, 5 and 7 after ischemic stroke. Dectin-1, Syk, phosphorylated (p)-Syk, tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS) expression was analyzed via western blotting in ischemic brain tissue after ischemic stroke and in BV2 microglial cells subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) injury in vitro. The brain infarct volume and Iba1-positive cells were evaluated using Nissl’s and immunofluorescence staining, respectively. The Dectin-1 antagonist laminarin (LAM) and a selective inhibitor of Syk phosphorylation (piceatannol; PIC) were used for the intervention. Dectin-1, Syk, and p-Syk expression was significantly enhanced on days 3, 5 and 7 and peaked on day 3 after ischemic stroke. The Dectin-1 antagonist LAM or Syk inhibitor PIC decreased the number of Iba1-positive cells and TNF-α and iNOS expression, decreased the brain infarct volume and improved neurological functions on day 3 after ischemic stroke. In addition, the in vitro data revealed that Dectin-1, Syk and p-Syk expression was increased following the 3-h OGD and 0, 3 and 6 h of reperfusion in BV2 microglial cells. LAM and PIC also decreased TNF-α and iNOS expression 3 h after OGD/R induction. Dectin-1/Syk signaling plays a crucial role in inflammatory activation after ischemic stroke, and further investigation of Dectin-1/Syk signaling in stroke is warranted.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhe-Qi Xu ◽  
Jing-Jing Zhang ◽  
Ni Kong ◽  
Guang-Yu Zhang ◽  
Ping Ke ◽  
...  

The α7 nicotinic acetylcholine receptor (α7nAChR) belongs to the superfamily of cys loop cationic ligand-gated channels, which consists of homogeneous α7 subunits. Although our lab found that activation of α7nAChR could alleviate ischemic stroke, the mechanism is still unknown. Herein, we explored whether autophagy is involved in the neuroprotective effect mediated by α7nAChR in ischemic stroke. Transient middle cerebral artery occlusion (tMCAO) and oxygen and glucose deprivation (OGD/R) exposure were applied to in vivo and in vitro models of ischemic stroke, respectively. Neurological deficit score and infarct volume were used to evaluate outcomes of tMCAO in the in vivo study. Autophagy-related proteins were detected by Western blot, and autophagy flux was detected by using tandem fluorescent mRFP-GFP-LC3 lentivirus. At 24 h after tMCAO, α7nAChR knockout mice showed worse neurological function and larger infarct volume than wild-type mice. PNU282987, an α7nAChR agonist, protected against OGD/R-induced neuronal injury, enhanced autophagy, and promoted autophagy flux. However, the beneficial effects of PNU282987 were eliminated by 3-methyladenine (3-MA), an autophagy inhibitor. Moreover, we found that PNU282987 treatment could activate the AMPK-mTOR-p70S6K signaling pathway in the in vitro study, while the effect was attenuated by compound C, an AMPK inhibitor. Our results demonstrated that the beneficial effect on neuronal survival via activation of α7nAChR was associated with enhanced autophagy, and the AMPK-mTOR-p70S6K signaling pathway was involved in α7nAChR activation–mediated neuroprotection.


2021 ◽  
Author(s):  
Pian Gong ◽  
Yichun Zou ◽  
Wei Zhang ◽  
Qi Tian ◽  
Shoumeng Han ◽  
...  

Abstract Insulin-like growth factor 1 (IGF-1) exhibits neuroprotective properties, such as vasodilatory and anti-inflammatory effects following ischemic stroke. However, the specific molecular mechanisms of action of IGF-1 following ischemic stroke remain elusive. We wanted to explore whether IGF-1 regulates Hippo/YAP signaling pathway, potentially via activation of the PI3K/AKT signaling pathway to exert its neuroprotective effects following ischemic stroke. In the in vitro study, we used oxygen–glucose deprivation to injure cultured PC12 and SH-5YSY cells, and cortical primary neurons. Cell viability was measured using CCK-8 assay. For the in vivo analyses, Sprague–Dawley rats were subjected to middle cerebral artery occlusion; neurological function was assessed using the neurological deficit score; infarct volume was measured using triphenyltetrazolium chloride staining, and neuronal death and apoptosis was evaluated by TUNEL staining, H&E staining and Nissl staining. Western blot was used to measure the levels of YAP/TAZ, PI3K and phosphorylated AKT (p-AKT) both in vitro and in vivo. We found that IGF-1 induced activation of YAP/TAZ, which resulted in improved cell viability in vitro, and decreased neurological deficits, neuronal death and apoptosis, and cerebral infarct volume in vivo. Notably, the neuroprotective effects of IGF-1 were reversed by an inhibitor of the PI3K/AKT signaling pathway, LY294002, which not only reduced expressions of PI3K and p-AKT, but also down-regulated expression of YAP/TAZ, leading to aggravation of neurological dysfunction. These findings indicate that neuroprotective effect of IGF-1 is partly realized by up-regulation of YAP/TAZ, which is mediated by activation of the PI3K/AKT signaling pathway following cerebral ischemic stroke.


Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Meijuan Zhang ◽  
Mingxu Xia ◽  
Qiuchen Zhao ◽  
Yun Xu

Background: Inflammasome in microglia are critical to elicit inflammatory cascades in ischemic stroke. Histone deacetylases 3 (HDAC3) regulate acetylation states of histone and non-histone proteins and could be a powerful regulator of inflammatory process in stroke. Methods: Primary microglia, BV2 cells subjected to oxygen glucose deprivation (OGD) or LPS stimulation were applied to mimic inflammatory response in vitro . Middle cerebral artery occlusion (MCAO) model were applied to mimic acute stroke in vivo . Ischemic infarct volume and neurological functions were evaluated through 2,3,5-triphenyltetrazolium chloride (TTC) staining and Neurological Severity Scores (NSS) respectively. Expression of HDAC3, AIM2 inflammasome were detected by western blotting, PCR. Immunofluorescence was used to detect M1/M2 polarization. Luciferase activity of absent in melanoma 2 (AIM2) reporter promoter constructs was measured by fluorospectrophotometer. AIM2 knockdown and over-expression leti-virus were constructed to decrease or increase AIM2 expression. HDAC3 inhibitor RGFP966 was used to inhibit acetylation activity of HDAC3. Results: HDAC3 is widely distributed in cerebral cortex, lateral ventricular , hippocampus, cerebellar cortex ; HDAC3 and AIM2 expression were enhanced in LPS stimulated-microglia and MCAO model. A marked stimulatory effect of RGFP966 on H3K9Ac was observed in nuclear extracts form BV2 cells at the dosage of 15 uM. Treatment of RGFP966 increased both IL-4-stimulated expression of Ym-1 and CD206 at 4 h, 10 h, 24 h, 48 h. AIM2, NLRP-1 and NLRP3 significantly increased in MCAO+Vehicle group compared to sham group, but decreased in MCAO+RGFP966 group. RGFP966 inhibited the elevation of circulatory IL-18 and IL-1β induced by stroke. RGFP966 decreased infracted size and alleviated neurological deficit. Conclusions: HDAC3i alleviated ischemic stroke injury through modulating AIM2 inflammasome and microglia polarization. Selective HDAC3 inhibitor-RGFP966 could be a potential medication for combating ischemic brain injury.


2021 ◽  
Vol 22 (13) ◽  
pp. 6898
Author(s):  
Karol Chojnowski ◽  
Mikolaj Opielka ◽  
Wojciech Nazar ◽  
Przemyslaw Kowianski ◽  
Ryszard T. Smolenski

Guanosine (Guo) is a nucleotide metabolite that acts as a potent neuromodulator with neurotrophic and regenerative properties in neurological disorders. Under brain ischemia or trauma, Guo is released to the extracellular milieu and its concentration substantially raises. In vitro studies on brain tissue slices or cell lines subjected to ischemic conditions demonstrated that Guo counteracts destructive events that occur during ischemic conditions, e.g., glutaminergic excitotoxicity, reactive oxygen and nitrogen species production. Moreover, Guo mitigates neuroinflammation and regulates post-translational processing. Guo asserts its neuroprotective effects via interplay with adenosine receptors, potassium channels, and excitatory amino acid transporters. Subsequently, guanosine activates several prosurvival molecular pathways including PI3K/Akt (PI3K) and MEK/ERK. Due to systemic degradation, the half-life of exogenous Guo is relatively low, thus creating difficulty regarding adequate exogenous Guo distribution. Nevertheless, in vivo studies performed on ischemic stroke rodent models provide promising results presenting a sustained decrease in infarct volume, improved neurological outcome, decrease in proinflammatory events, and stimulation of neuroregeneration through the release of neurotrophic factors. In this comprehensive review, we discuss molecular signaling related to Guo protection against brain ischemia. We present recent advances, limitations, and prospects in exogenous guanosine therapy in the context of ischemic stroke.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Xin-Chun Ye ◽  
Qi Hao ◽  
Wei-Jing Ma ◽  
Qiu-Chen Zhao ◽  
Wei-Wei Wang ◽  
...  

Abstract Background Dendritic cell-associated C-type lectin-1 (Dectin-1) receptor has been reported to be involved in neuroinflammation in Alzheimer’s disease and traumatic brain injury. The present study was designed to investigate the role of Dectin-1 and its downstream target spleen tyrosine kinase (Syk) in early brain injury after ischemic stroke using a focal cortex ischemic stroke model. Methods Adult male C57BL/6 J mice were subjected to a cerebral focal ischemia model of ischemic stroke. The neurological score, adhesive removal test, and foot-fault test were evaluated on days 1, 3, 5, and 7 after ischemic stroke. Dectin-1, Syk, phosphorylated (p)-Syk, tumor necrosis factor-α (TNF-α), and inducible nitric oxide synthase (iNOS) expression was analyzed via western blotting in ischemic brain tissue after ischemic stroke and in BV2 microglial cells subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) injury in vitro. The brain infarct volume and Iba1-positive cells were evaluated using Nissl’s and immunofluorescence staining, respectively. The Dectin-1 antagonist laminarin (LAM) and a selective inhibitor of Syk phosphorylation (piceatannol; PIC) were used for the intervention. Results Dectin-1, Syk, and p-Syk expression was significantly enhanced on days 3, 5, and 7 and peaked on day 3 after ischemic stroke. The Dectin-1 antagonist LAM or Syk inhibitor PIC decreased the number of Iba1-positive cells and TNF-α and iNOS expression, decreased the brain infarct volume, and improved neurological functions on day 3 after ischemic stroke. In addition, the in vitro data revealed that Dectin-1, Syk, and p-Syk expression was increased following the 3-h OGD and 0, 3, and 6 h of reperfusion in BV2 microglial cells. LAM and PIC also decreased TNF-α and iNOS expression 3 h after OGD/R induction. Conclusion Dectin-1/Syk signaling plays a crucial role in inflammatory activation after ischemic stroke, and further investigation of Dectin-1/Syk signaling in stroke is warranted.


Sign in / Sign up

Export Citation Format

Share Document