Mechanisms involved in neuroprotective effects of transcranial magnetic stimulation

Author(s):  
Javier Caballero-Villarraso ◽  
Francisco Javier Medina ◽  
Begoña M. Escribano ◽  
Eduardo Agüera ◽  
Abel Santamaría ◽  
...  

: Transcranial magnetic stimulation (TMS) is widely used in neurophysiology to study cortical excitability. Research over the last few decades has highlighted its additional value as a potential therapeutic tool in the treatment of a broad range of psychiatric disorders. More recently, a number of studies have reported beneficial and therapeutic effects for TMS in neurodegenerative conditions and strokes. Yet despite its recognised clinical applications and despite considerable research using animal models, the molecular and physiological mechanisms through which TMS exerts its beneficial and therapeutic effects remain unclear. They are thought to involve biochemical-molecular events affecting membrane potential and gene expression. In this aspect, the dopaminergic system plays a special role. This is the most directly and selectively modulated neurotransmitter system, producing an increase in the flux of dopamine (DA) in various areas of the brain after the application of repetitive TMS (rTMS). Other neurotransmitters, such as glutamate and gamma-aminobutyric acid (GABA) have shown a paradoxical response to rTMS. In this way, their levels increased in the hippocampus and striatum but decreased in the hypothalamus and remained unchanged in the mesencephalon. Similarly, there are sufficient evidences that TMS up-regulates the gene expression of BDNF (one of the main brain neurotrophins). Something similar occurs with the expression of genes such as c-Fos and zif268 that encode trophic and regenerative action neuropeptides. Consequently, the application of TMS can promote the release of molecules involved in neuronal genesis and maintenance. This capacity may mean that TMS becomes a useful therapeutic resource to antagonize processes that underlie the previously mentioned neurodegenerative conditions.

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Tsung-Hsun Hsieh ◽  
Xiao-Kuo He ◽  
Hui-Hua Liu ◽  
Jia-Jin J. Chen ◽  
Chih-Wei Peng ◽  
...  

Repetitive transcranial magnetic stimulation (rTMS) is a popular noninvasive technique for modulating motor cortical plasticity and has therapeutic potential for the treatment of Parkinson’s disease (PD). However, the therapeutic benefits and related mechanisms of rTMS in PD are still uncertain. Accordingly, preclinical animal research is helpful for enabling translational research to explore an effective therapeutic strategy and for better understanding the underlying mechanisms. Therefore, the current study was designed to identify the therapeutic effects of rTMS on hemiparkinsonian rats. A hemiparkinsonian rat model, induced by unilateral injection of 6-hydroxydopamine (6-OHDA), was applied to evaluate the therapeutic potential of rTMS in motor functions and neuroprotective effect of dopaminergic neurons. Following early and long-term rTMS intervention with an intermittent theta burst stimulation (iTBS) paradigm (starting 24 h post-6-OHDA lesion, 1 session/day, 7 days/week, for a total of 4 weeks) in awake hemiparkinsonian rats, the effects of rTMS on the performance in detailed functional behavioral tests, including video-based gait analysis, the bar test for akinesia, apomorphine-induced rotational analysis, and tests of the degeneration level of dopaminergic neurons, were identified. We found that four weeks of rTMS intervention significantly reduced the aggravation of PD-related symptoms post-6-OHDA lesion. Immunohistochemically, the results showed that tyrosine hydroxylase- (TH-) positive neurons in the substantia nigra pars compacta (SNpc) and fibers in the striatum were significantly preserved in the rTMS treatment group. These findings suggest that early and long-term rTMS with the iTBS paradigm exerts neuroprotective effects and mitigates motor impairments in a hemiparkinsonian rat model. These results further highlight the potential therapeutic effects of rTMS and confirm that long-term rTMS treatment might have clinical relevance and usefulness as an additional treatment approach in individuals with PD.


2019 ◽  
Vol 12 (2) ◽  
pp. e28
Author(s):  
Cintya Hayashi ◽  
Iuri S. Nevile ◽  
Cesar C. Almeida ◽  
Priscila Rodrigues ◽  
Ricardo RG. Galhardoni ◽  
...  

2021 ◽  
Vol 11 (4) ◽  
pp. 432
Author(s):  
Fiorenzo Moscatelli ◽  
Antonietta Messina ◽  
Anna Valenzano ◽  
Vincenzo Monda ◽  
Monica Salerno ◽  
...  

Transcranial magnetic stimulation, since its introduction in 1985, has brought important innovations to the study of cortical excitability as it is a non-invasive method and, therefore, can be used both in healthy and sick subjects. Since the introduction of this cortical stimulation technique, it has been possible to deepen the neurophysiological aspects of motor activation and control. In this narrative review, we want to provide a brief overview regarding TMS as a tool to investigate changes in cortex excitability in athletes and highlight how this tool can be used to investigate the acute and chronic responses of the motor cortex in sport science. The parameters that could be used for the evaluation of cortical excitability and the relative relationship with motor coordination and muscle fatigue, will be also analyzed. Repetitive physical training is generally considered as a principal strategy for acquiring a motor skill, and this process can elicit cortical motor representational changes referred to as use-dependent plasticity. In training settings, physical practice combined with the observation of target movements can enhance cortical excitability and facilitate the process of learning. The data to date suggest that TMS is a valid technique to investigate the changes in motor cortex excitability in trained and untrained subjects. Recently, interest in the possible ergogenic effect of non-invasive brain stimulation in sport is growing and therefore in the future it could be useful to conduct new experiments to evaluate the impact on learning and motor performance of these techniques.


2020 ◽  
Vol 47 (4) ◽  
pp. 427-434
Author(s):  
Mohammed S. El-Tamawy ◽  
Moshera H. Darwish ◽  
Saly H. Elkholy ◽  
Engy BadrEldin S. Moustafa ◽  
Shimaa T. Abulkassem ◽  
...  

BACKGROUND: Cortical reorganization between both cerebral hemispheres plays an important role in regaining the affected upper extremity motor function post-stroke. OBJECTIVES: The purpose of the current study was to investigate the recommended number of contra-lesion low frequency repetitive transcranial magnetic stimulation (LF-rTMS) sessions that could enhance cortical reorganization post-stroke. METHODS: Forty patients with right hemiparetic subacute ischemic stroke with an age range between 50–65 yrs were randomly assigned into two equal groups: control (GA) and study (GB) groups. Both groups were treated with a selected physical therapy program for the upper limb. Sham and real contra-lesion LF-rTMS was conducted for both groups daily for two consecutive weeks. Sequential changes of cortical excitability were calculated by the end of each session. RESULTS: The significant enhancement in the cortical excitability was observed at the fourth session in favor of the study group (GB). Sequential rate of change in cortical excitability was significant for the first eight sessions. From the ninth session onwards, no difference could be detected between groups. CONCLUSION: The pattern of recovery after stroke is extensive and not all factors could be controlled. Application of LF-rTMS in conjugation with a selected physical therapy program for the upper limb from four to eight sessions seems to be efficient.


Epilepsia ◽  
2014 ◽  
Vol 55 (2) ◽  
pp. 362-369 ◽  
Author(s):  
Katja Menzler ◽  
Anke Hermsen ◽  
Katharina Balkenhol ◽  
Caroline Duddek ◽  
Hannes Bugiel ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Li-Jin Wang ◽  
Lin-Lin Mu ◽  
Zi-Xuan Ren ◽  
Hua-Jun Tang ◽  
Ya-Dong Wei ◽  
...  

Background: Repetitive transcranial magnetic stimulation (rTMS) has therapeutic effects on craving in methamphetamine (METH) use disorder (MUD). The chronic abuse of METH causes impairments in executive function, and improving executive function reduces relapse and improves treatment outcomes for drug use disorder. The purpose of this study was to determine whether executive function helped predict patients' responses to rTMS treatment.Methods: This study employed intermittent theta burst stimulation (iTBS) rTMS modalities and observed their therapeutic effects on executive function and craving in MUD patients. MUD patients from an isolated Drug Rehabilitation Institute in China were chosen and randomly allocated to the iTBS group and sham-stimulation group. All participants underwent the Behavior Rating Inventory of Executive Function - Adult Version Scale (BRIEF-A) and Visual Analog Scales (VAS) measurements. Sixty-five healthy adults matched to the general condition of MUD patients were also recruited as healthy controls.Findings: Patients with MUD had significantly worse executive function. iTBS groups had better treatment effects on the MUD group than the sham-stimulation group. Further Spearman rank correlation and stepwise multivariate regression analysis revealed that reduction rates of the total score of the BRIEF-A and subscale scores of the inhibition factor and working memory factor in the iTBS group positively correlated with improvements in craving. ROC curve analysis showed that working memory (AUC = 87.4%; 95% CI = 0.220, 0.631) and GEC (AUC = 0.761%; 95% CI = 0.209, 0.659) had predictive power to iTBS therapeutic efficacy. The cutoff values are 13.393 and 59.804, respectively.Conclusions: The iTBS rTMS had a better therapeutic effect on the executive function of patients with MUD, and the improved executive function had the potential to become a predictor for the efficacy of iTBS modality for MUD treatment.Clinical Trial Registration:ClinicalTrials.gov, identifier: ChiCTR2100046954.


Sign in / Sign up

Export Citation Format

Share Document