Humoral Immunity in Heart Failure

Author(s):  
Amrita Sarkar ◽  
Khadija Rafiq

Cardiovascular Disease (CVD) is a class of diseases that involve disorders of heart and blood vessels, including hypertension, coronary heart disease, cerebrovascular disease, peripheral vascular disease, which finally lead to Heart Failure (HF). There are several treatments available all over the world, but still, CVD and heart failure became the number one problem causing death every year worldwide. Both experimental and clinical studies have shown a role for inflammation in the pathogenesis of heart failure. This seems related to an imbalance between pro-inflammatory and anti-inflammatory cytokines. Cardiac inflammation is a major pathophysiological mechanism operating in the failing heart, regardless of HF aetiology. Disturbances of the cellular and humoral immune system are frequently observed in heart failure. This review describes how B-cells play a specific role in the heart failure states. There is an urgent need to identify novel therapeutic targets and develop advanced therapeutic strategies to combat the syndrome of HF. Understanding and describing the elements of the humoral immunity function are essential and may suggest potential new treatment strategies.

2019 ◽  
Vol 115 (13) ◽  
pp. 1838-1849 ◽  
Author(s):  
Christian Riehle ◽  
Johann Bauersachs

Abstract Heart disease is a major cause of death worldwide with increasing prevalence, which urges the development of new therapeutic strategies. Over the last few decades, numerous small animal models have been generated to mimic various pathomechanisms contributing to heart failure (HF). Despite some limitations, these animal models have greatly advanced our understanding of the pathogenesis of the different aetiologies of HF and paved the way to understanding the underlying mechanisms and development of successful treatments. These models utilize surgical techniques, genetic modifications, and pharmacological approaches. The present review discusses the strengths and limitations of commonly used small animal HF models, which continue to provide crucial insight and facilitate the development of new treatment strategies for patients with HF.


2012 ◽  
Vol 60 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Magdalena Łój ◽  
Magdalena Garncarz ◽  
Michał Jank

The most common causes of heart failure in dogs are valvular disease, predominantly endocardiosis, and myocardial disease, predominantly dilated cardiomyopathy. They are related to changes in the expression of several genes in the heart muscle and in peripheral blood nuclear cells which could be considered as prognostic or diagnostic markers of heart disease in dogs. Since many human genetic markers of heart failure have turned out to be useless in dogs, the screening for genomic markers of canine heart failure could give more insight into the molecular pathology of these diseases and aid the development of new treatment strategies.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 72 ◽  
Author(s):  
Michael S. Kapiloff ◽  
Craig A. Emter

The prevalence of heart failure is expected to increase almost 50% in the next 15 years because of aging of the general population, an increased frequency of comorbidities, and an improved survival following cardiac events. Conventional treatments for heart failure have remained largely static over the past 20 years, illustrating the pressing need for the discovery of novel therapeutic agents for this patient population. Given the heterogeneous nature of heart failure, it is important to specifically define the cellular mechanisms in the heart that drive the patient’s symptoms, particularly when considering new treatment strategies. This report highlights the latest research efforts, as well as the possible pitfalls, in cardiac disease translational research and discusses future questions and considerations needed to advance the development of new heart failure therapies. In particular, we discuss cardiac remodeling and the translation of animal work to humans and how advancements in our understanding of these concepts relative to disease are central to new discoveries that can improve cardiovascular health.


2020 ◽  
Vol 21 (24) ◽  
pp. 9337
Author(s):  
Petr Kala ◽  
Hana Bartušková ◽  
Jan Piťha ◽  
Zdenka Vaňourková ◽  
Soňa Kikerlová ◽  
...  

Doxorubicin’s (DOX) cardiotoxicity contributes to the development of chemotherapy-induced heart failure (HF) and new treatment strategies are in high demand. The aim of the present study was to characterize a DOX-induced model of HF in Ren-2 transgenic rats (TGR), those characterized by hypertension and hyperactivity of the renin-angiotensin-aldosterone system, and to compare the results with normotensive transgene-negative, Hannover Sprague-Dawley (HanSD) rats. DOX was administered for two weeks in a cumulative dose of 15 mg/kg. In HanSD rats DOX administration resulted in the development of an early phase of HF with the dominant symptom of bilateral cardiac atrophy demonstrable two weeks after the last DOX injection. In TGR, DOX caused substantial impairment of systolic function already at the end of the treatment, with further progression observed throughout the experiment. Additionally, two weeks after the termination of DOX treatment, TGR exhibited signs of HF characteristic for the transition stage between the compensated and decompensated phases of HF. In conclusion, we suggest that DOX-induced HF in TGR is a suitable model to study the pathophysiological aspects of chemotherapy-induced HF and to evaluate novel therapeutic strategies to combat this form of HF, which are urgently needed.


2019 ◽  
Vol 4 (3) ◽  
pp. 141-144
Author(s):  
Evelin Szabó ◽  
Zsolt Parajkó ◽  
Diana Opincariu ◽  
Monica Chițu ◽  
Nóra Raț ◽  
...  

Abstract Atherosclerosis is the elemental precondition for any cardiovascular disease and the predominant cause of ischemic heart disease that often leads to myocardial infarction. Systemic risk factors play an important role in the starting and progression of atherosclerosis. The complexity of the disease is caused by its multifactorial origin. Besides the traditional risk factors, genetic predisposition is also a strong risk factor. Many studies have intensively researched cardioprotective drugs, which can relieve myocardial ischemia and reperfusion injury, thereby reducing infarct size. A better understanding of abnormal epigenetic pathways in the myocardial pathology may result in new treatment options. Individualized therapy based on genome sequencing is important for an effective future medical treatment. Studies based on multiomics help to better understand the pathophysiological mechanism of several diseases at a molecular level. Epigenomic, transcriptomic, proteomic, and metabolomic research may be essential in detecting the pathological phenotype of myocardial ischemia and ischemic heart failure.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 265
Author(s):  
Maria-Luisa Pérez-Lozano ◽  
Annabelle Cesaro ◽  
Marija Mazor ◽  
Eric Esteve ◽  
Sabine Berteina-Raboin ◽  
...  

Osteoarthritis (OA) is a complex degenerative disease in which joint homeostasis is disrupted, leading to synovial inflammation, cartilage degradation, subchondral bone remodeling, and resulting in pain and joint disability. Yet, the development of new treatment strategies to restore the equilibrium of the osteoarthritic joint remains a challenge. Numerous studies have revealed that dietary components and/or natural products have anti-inflammatory, antioxidant, anti-bone-resorption, and anabolic potential and have received much attention toward the development of new therapeutic strategies for OA treatment. In the present review, we provide an overview of current and emerging natural-product-based research treatments for OA management by drawing attention to experimental, pre-clinical, and clinical models. Herein, we review current and emerging natural-product-based research treatments for OA management.


Sign in / Sign up

Export Citation Format

Share Document