Effect of Fetal and Neonatal Hypothyroidism on Glucose Tolerance in Middle-Aged Female Rats

Author(s):  
Sajad Jeddi ◽  
Saeedeh Khalifi ◽  
Mahboubeh Ghanbari ◽  
Asghar Ghasemi

Background and objective: The effects of hypothyroidism during pregnancy and lactation on carbohydrate metabolism have been mostly studied in male animals. The aim of this study is therefore to investigate effect of fetal and neonatal hypothyroidism (FH and NH) on the glucose tolerance in middle-aged female rat offspring. Methods: Pregnant female rats were divided into three groups: Rats in the control group consumed tap water, while those in the FH and NH groups consumed 250 mg/L of 6-propyl-2-thiouracil (PTU) in their drinking water during gestation or lactation periods, respectively. After weaning, the female offspring were separated and divided into 3 groups (n=8/group): Control, FH, and NH. Body weight was recorded monthly and intravenous glucose tolerance test (IVGTT) was performed at month 12. Results: Compared to controls, female rats in the FH group had significantly higher plasma glucose levels than controls throughout the IVGTT except at min 60. Values at min 5 of the FH and control group were 196.1±1.9 and 155.3±5.9 mg/dL, respectively (P<0.05). In the NH group, plasma glucose levels were significantly higher only at min 5 (185.7±14.1 vs. 155.3±5.9 mg/dL, P<0.05). Conclusion: Hypothyroidism during fetal or neonatal periods caused glucose intolerance in middle-aged female offspring rats.

1976 ◽  
Vol 54 (6) ◽  
pp. 870-875 ◽  
Author(s):  
Suzanne Rousseau-Migneron ◽  
André Nadeau ◽  
Jacques LeBlanc

To determine whether rats could adapt to a chronic exogenous supply of adrenaline by a decrease in the well-known inhibitory effect of adrenaline on insulin secretion, plasma glucose and insulin levels were measured in unanesthetized control and adrenaline-treated rats (300 μg/kg twice a day for 28 days) during an adrenaline infusion (0.75 μg kg−1 min−1), after an acute glucose load (0.5 g/kg), and during the simultaneous administration of both agents. Chronic treatment with adrenaline did not modify the initial glucose levels but it greatly diminished the basal insulin values (21.57 ± 2.48 vs. 44.69 ± 3.3 μU/ml, p < 0.01). In the control rats, despite the elevated glucose concentrations, a significant drop in plasma insulin levels was observed within the first 15 min of adrenaline infusion, followed by a period of recovery. In the adrenaline-treated group, in which plasma glucose levels were lower than in control animals, plasma insulin levels did not drop as in control rats, but a significant increase was found after 30 min of infusion. During the intravenous glucose tolerance test, the plasma glucose and insulin responses showed similar patterns; however, during the concomitant adrenaline infusion, the treated rats showed a better glucose tolerance than their controls. These results indicate that rats chronically treated with adrenaline adapt to the diabetogenic effect of an infusion of adrenaline by having a lower inhibition of insulin release, although the lower basal insulin levels may indicate a greater sensitivity to endogenous insulin.


2012 ◽  
Vol 56 (2) ◽  
pp. 96-103 ◽  
Author(s):  
Raquel Spadotto ◽  
Débora Cristina Damasceno ◽  
Antonio Francisco Godinho ◽  
Elaine Manoela Porto Amorim ◽  
Juliana Elaine Perobelli ◽  
...  

OBJECTIVES: The objective of this study was to evaluate physical and sexual development and reproductive physiology in female rat offspring that developed in hyperglycemia conditions in utero and during lactation. MATERIALS AND METHODS: Maternal diabetes was induced in female rats by a single IV injection of streptozotocin before mating. Female offspring development was evaluated by means of the following parameters: physical development; age of vaginal opening and first estrus; weight and histological evaluation of uterus and ovaries; duration of the estrous cycle, sexual behavior, and fertility after natural mating. RESULTS: In the female offspring, maternal diabetes caused delays in initial physical development; diminution in ovary weight and number of follicles; and inferior reproductive performance compared with the control group. CONCLUSIONS: The exposure to hyperglycemia in uterus and during lactation caused delays in physical and sexual development, and affected the reproductive physiology of female rats negatively.


1993 ◽  
Vol 71 (12) ◽  
pp. 931-937 ◽  
Author(s):  
Christine Jean ◽  
Gilles Tancrède ◽  
André Nadeau

Physical training increases insulin sensitivity by mechanisms not yet fully understood. Because exercise also modulates adrenergic system activity, the present study was designed to ascertain whether the improved glucose homeostasis observed in trained rats is influenced by epinephrine secretion from the adrenal medullae. Male Wistar rats previously submitted to adrenal demedullation or sham operated were kept sedentary or trained on a treadmill over a 10-week period. An intravenous glucose tolerance test (IVGTT) was done 64 h after the last bout of exercise. Basal plasma glucose levels were reduced by physical training (p < 0.005) and by adrenal demedullation (p < 0.001). Adrenodemedullated rats had lower (p < 0.005) plasma glucose levels than sham-operated animals over the whole glucose tolerance curve. Trained animals had lower (p < 0.01) plasma glucose levels than sedentary rats throughout the IVGTT, except at 45 min. The glucose disappearance rate measured after the glucose bolus injection was increased by training (p < 0.05), whereas it was not modified by adrenal demedullation. Basal plasma insulin levels were reduced (p < 0.001) by physical training but unaffected by adrenal demedullation. During the IVGTT, adrenodemedullated rats had higher (p < 0.01) plasma insulin levels at 2, 4, and 6 min, whereas trained animals had lower (p < 0.05) plasma insulin levels throughout the test. Moreover, insulin in adrenodemedullated and trained rats had returned to basal levels at 30 min. The area under the curve for insulin was diminished by physical training (p < 0.001) but was not modified by adrenal demedullation. In the basal state and during the IVGTT, the sedentary adrenodemedullated rats had higher (p < 0.05) plasma glucagon levels compared with the other groups of animals. Pancreatic insulin content was not modified by adrenal demedullation but was diminished (p < 0.01) by physical training. The pancreatic glucagon content was not altered by adrenal demedullation or physical training. Because adrenal demedullation abolished the exercise-induced increase in epinephrine secretion, the results of the present study suggest that the enhanced insulin sensitivity induced by physical training is not caused by an increase in epinephrine secretion from the adrenal medullae.Key words: adrenal demedullation, physical training, glucose tolerance, insulin sensitivity, catecholamines.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 772-P
Author(s):  
MARIKO HIGA ◽  
AYANA HASHIMOTO ◽  
MOE HAYASAKA ◽  
MAI HIJIKATA ◽  
AYAMI UEDA ◽  
...  

2019 ◽  
Vol 8 ◽  
pp. 1093
Author(s):  
Solmaz Khalifeh ◽  
Fariba Khodagholi ◽  
Mehrad Moghtadaei ◽  
Ali Behvarmanesh ◽  
Afshin Kheradmand ◽  
...  

Background: Early life stress (ELS) models such as maternal deprivation (MD) are used to in¬vestigate behavioral changes in rodents under stressful situations. MD is a situation in which rat pups are separated from the dam; MD has different paradigms. The purpose of this research is to evaluate the effects of maternal deprivation on anxiety, depression, and empathy in adult Wistar rats. Materials and Methods: MD was applied to pups as per specifically designed protocol to compare rats of the control group with maternal deprivation rats and also the group, which faced novel objects. Each group consisted of eight rats. In this study, separation started from postnatal day (PND) 14 for various periods up to PND 60. EPM test was undertaken to measure anxiety; moreover, FST was used to indicate levels of depression. Also, changes in the empathy ratio were also demonstrated. One-way analysis of variance (ANOVA), Tukey’s post hoc analysis, and t-test were applied to analyze the results. Results: MD-treated rats showed a significant decrease in anxiety and empathy indexes compared with those in the control group (P<0.05). However, MD significantly increased depression in both male and female rats (P<0.05). Final¬ly, exposure to novel objects decreased depression but did not have any effect on anxiety and empathy levels in MD rats (P<0.05). Conclusion: ELS may lead to various states of mood and behavior in adulthood. According to the findings of this study, depression increases due to MD, though both anxiety and empathy decrease in both male and female Wistar rats. Moreover, ex¬posure to novel objects decreases depression, while anxiety and empathy do not change signifi¬cantly with exposure to novel objects. [GMJ.2019;8:e1093]


Sign in / Sign up

Export Citation Format

Share Document