The Study on Semi-Blunt Puncture Behavior of Nanofiber Membrane/ Non-Woven Composite Material

2019 ◽  
Vol 13 (1) ◽  
pp. 70-76
Author(s):  
Fei-Fei Wang ◽  
Qian Wang ◽  
Yan Zhang ◽  
Zhu-Xin Zhao ◽  
Ping Wang ◽  
...  

Background: Nanofiber membrane/non-woven composite material is composed of electrospinning nanofiber membrane and non-woven fabric, which combines the supporting role of nonwoven material and the special nano-size effect of nanomaterials. Objective: These composite material can be widely used in biomedical, filtration and other related fields. In the actual use process, nanofiber membrane/non-woven composite material is often subjected to external forces such as puncture or bursting. As a result, the mechanical study of nanofiber membrane/ non-woven composite materials has a high value and practical significance. Methods: The nanofiber membrane/non-woven composite material was obtained by spraying solution (different concentrations of titanium dioxide-loaded Poly (vinyl alcohol) (PVA)) on meltblown polyester non-woven fabric. The surface morphology and fiber diameter of different concentrations nanotitanium dioxide-loaded Poly (vinyl alcohol) fiber were investigated by Field Emission Scanning Electron Microscopy (FESEM). The surface distribution of TiO2 on the electrospun fibrous membranes was characterized by Energy Disperse Spectroscopy (EDS). The semi-blunt puncture behavior of different concentrations of nano-titanium dioxide-loaded nanofiber membrane/non-woven composite material was conducted by universal material machine. Results: With the increase of concentrations of nano-titanium dioxide particles, the surface smoothness of nanofibers diminishes, the unevenness of the diameter distribution of the fiber increased and the maximum semi-blunt puncture strength increased. Conclusion: The addition of hard particles does contribute to improving the puncture properties of the composite materials. Several patents, related to electrospinning and bubble electrospinning equipment for nanofiber fabrication, have been reported.

Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 83
Author(s):  
Cláudia Mouro ◽  
Colum P. Dunne ◽  
Isabel C. Gouveia

Wounds display particular vulnerability to microbial invasion and infections by pathogenic bacteria. Therefore, to reduce the risk of wound infections, researchers have expended considerable energy on developing advanced therapeutic dressings, such as electrospun membranes containing antimicrobial agents. Among the most used antimicrobial agents, medicinal plant extracts demonstrate considerable potential for clinical use, due primarily to their efficacy allied to relatively low incidence of adverse side-effects. In this context, the present work aimed to develop a unique dual-layer composite material with enhanced antibacterial activity derived from a coating layer of Poly(vinyl alcohol) (PVA) and Chitosan (CS) containing Agrimonia eupatoria L. (AG). This novel material has properties that facilitate it being electrospun above a conventional cotton gauze bandage pre-treated with 2,2,6,6-tetramethylpiperidinyl-1-oxy free radical (TEMPO). The produced dual-layer composite material demonstrated features attractive in production of wound dressings, specifically, wettability, porosity, and swelling capacity. Moreover, antibacterial assays showed that AG-incorporated into PVA_CS’s coating layer could effectively inhibit Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) growth. Equally important, the cytotoxic profile of the dual-layer material in normal human dermal fibroblast (NHDF) cells demonstrated biocompatibility. In summary, these data provide initial confidence that the TEMPO-oxidized cotton/PVA_CS dressing material containing AG extract demonstrates adequate mechanical attributes for use as a wound dressing and represents a promising approach to prevention of bacterial wound contamination.


2020 ◽  
pp. 096739112091845
Author(s):  
Olga Mysiukiewicz ◽  
Mateusz Barczewski ◽  
Danuta Matykiewicz ◽  
Katarzyna Skórczewska

The object of the research was biodegradable hybrid composites based on poly(vinyl alcohol) (PVA), reinforced with cotton/flax woven fabric and 5–30 phr of chestnut shell powder, a waste filler. The influence of the lignocellulosic particles on mechanical, thermal, and thermomechanical properties of the composites determined in static tensile test, thermogravimetric analysis, and dynamic mechanical thermal analysis and evaluated in reference to the materials’ structures assessed by means of optical microscopy. The analysis was complemented with evaluation of physical properties of the composites, such as density and moisture content. It was found that the hybrid composites present favorable properties and addition of the waste filler does not cause a deterioration of the thermomechanical characteristics of the materials. Utilization of the waste filler for production of the PVA-based composites is consistent with the idea of Circular Economy and also allows to obtain materials with properties comparable with the ones of conventional polymers.


2014 ◽  
Vol 968 ◽  
pp. 80-83
Author(s):  
Chuan Bao Wu ◽  
Bo Qiao

A novel kind of environmentally friendly composite materials containing upper part of rice straw segments (URSS), poly (vinyl alcohol) (PVA) and waste paper (WP) were prepared by hot-pressing at 140°C for 10 min. The tensile strength, tensile elongation and hardness of composites were measured. Results showed that the tensile strength and the strength at tensile break of the composites first increased and then decreased with increasing PVA content. Tensile strength was higher than the strength at tensile break at different PVA contents, indicating that URSS/PVA/WP composite materials had certain toughness. Otherwise, URSS/PVA/WP composite materials had higher tensile strength than URSS/PVA composites. The tensile strengths of them were respectively 9.25 MPa and 3.9 MPa when prepared at PVA content of 40%. The hardness of composites lay between 90 and 96. Negligible difference exists in every composite.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Tanja Eichhorn ◽  
Alexander E. Ivanov ◽  
Maria B. Dainiak ◽  
André Leistner ◽  
Ingrid Linsberger ◽  
...  

Composite monolithic adsorbents were prepared by the incorporation of neutral polystyrene divinylbenzene (PS-DVB) microparticles into macroporous polymer structures produced by cryogelation of agarose or poly(vinyl alcohol). The composite materials exhibited excellent flow-through properties. Scanning electron microscopy of the composite cryogels revealed that the microparticles were covered by thin films of poly(vinyl alcohol) or agarose and thus were withheld in the monolith structure. Plain PS-DVB microparticles showed efficient adsorption of albumin-bound toxins related to liver failure (bilirubin and cholic acid) and of cytokines (tumor necrosis factor-alpha and interleukin-6). The rates of adsorption and the amount of adsorbed factors were lower for the embedded microparticles as compared to the parent PS-DVB microparticles, indicating the importance of the accessibility of the adsorbent pores. Still, the macroporous composite materials showed efficient adsorption of albumin-bound toxins related to liver failure as well as efficient binding of cytokines, combined with good blood compatibility. Thus, the incorporation of microparticles into macroporous polymer structures may provide an option for the development of adsorption modules for extracorporeal blood purification.


2009 ◽  
Vol 111 (6) ◽  
pp. 2892-2899 ◽  
Author(s):  
Bokgi Son ◽  
Bong-Yeol Yeom ◽  
Sang Hun Song ◽  
Chang-Soo Lee ◽  
Taek Sung Hwang

RSC Advances ◽  
2015 ◽  
Vol 5 (6) ◽  
pp. 4659-4663 ◽  
Author(s):  
Hu-Chun Tao ◽  
Xiao-Nan Sun ◽  
Ying Xiong

A novel titanium dioxide (TiO2)–quaternized poly(vinyl alcohol) (QAPVA) hybrid anion exchange membrane (T membrane) is prepared, and its feasibility for use in microbial fuel cells (MFCs) is investigated in this study.


2011 ◽  
Vol 84 (4) ◽  
pp. 1408-1412 ◽  
Author(s):  
Jun-ichi Kadokawa ◽  
Akihiko Takegawa ◽  
Shozaburo Mine ◽  
Kamalesh Prasad

Sign in / Sign up

Export Citation Format

Share Document