Formulation Development And In Vitro-Ex Vivo Assessment Of Simvastatin Niosomal Buccal Films

Author(s):  
Sudhakar Beeravelli ◽  
Vyasamurthy Akondi ◽  
Madhavi Nimmathota

Aim: Aim of the present study is to develop and characterize simvastatin niosomal film for effective buccal delivery. Methods: Simvastatin niosomes were developed by film hydration technique followed by high-pressure homogenization using chiller at 5°C. The simvastatin niosomes were characterized for various physicochemical parameters and simvastatin plain and niosomal films were prepared using PEO as the base by solvent casting technique. Results: From the simvastatin niosomes suspension, the percentage assay was found in the range of 96 to 103%, particles size was found in the range of 112nm to 308nm, the zeta potential was found in the range of -9 to -25.8mV, the %EE was found in the range of 28% to 91% and the in vitro permeation was found in the range of 43.41% to 98% respectively. The niosomal film shown superior results as compared to simvastatin plain film. The FTIR and DSC confirm the compatibility among the existed excipients. Conclusion: Niosomes alter the physicochemical properties of simvastatin by buccal route. The prolonged permeation (96.12% up to 24hrs) of simvastatin was observed from niosomes film across the porcine buccal cavity, due to the presence of CPE in the composition, which would be useful for effective buccal delivery.

Author(s):  
Prasanta Kumar Mohapatra ◽  
Boddu Pavan Kumar ◽  
Pankaj Singh Patel ◽  
Harish Chandra Verma ◽  
Satyajit Sahoo

Mucoadhesive buccal films of rivastigmine were prepared by the solvent casting technique using HPMC K15M, sodium alginate, glycerine, and Eudragit RL100. Arranged films assessed for weight variation, thickness, % drug substance, % moisture loss, % moisture take-up, folding endurance, in-vitro medicament release, and Fourier transform Infrared spectroscopy (FTIR). The films showed a controlled release (CR) over 8 h. The preparation observed to be a worthy candidate for the development of buccal patches for therapeutic purposes. Drug-polymer compatibility considers FTIR demonstrated no contradiction between the medicament and the polymers. The optimized formulation found F7 indicated drug release 85% at the end of 8 h. Thinking about the correlation coefficient (R2) values got from the kinetic equations, the drug release from the formulations F1-F8 has discovered zero-order release mechanism. It can be concluded that oral buccal patches of rivastigmine, for treatment of Alzheimer’s and Parkinson’s disease, can be formulated. The study suggests that rivastigmine can be conveniently administered orally in the form of buccal patches, with the lesser occurrence of its side effects and improved bioavailability.


Author(s):  
Mona Semalty ◽  
Ajay Semalty ◽  
Ganesh Kumar ◽  
Vijay Juyal

For improving bioavailability in controlled release fashion and to circumvent the hepatic first pass effect of glipizide mucoadhesive buccal films of glipizide were prepared by solvent casting technique. Buccal films were prepared using hydroxy propylmethylcellulose, sodium carboxymethylcellulose, carbopol-934P and Eudragit RL-100. Films were evaluated for their weight, thickness, surface pH, swelling index,       in vitro residence time, folding endurance, in vitro release, ex vivo permeation studies and drug content uniformity. The films exhibited controlled release over more than 6 h. From the study it was concluded that the films containing 5 mg glipizide in 4.9 % w/v hydroxy propylmethylcellulose and 1.5 % w/v sodium carboxymethylcellulose exhibited satisfactory swelling, an optimum residence time and promising drug release thus proved to be potential candidate for the development of buccal films for therapeutic use.


INDIAN DRUGS ◽  
2016 ◽  
Vol 53 (09) ◽  
pp. 34-41
Author(s):  
M. R Andrea ◽  
◽  
P. M. Dandagi ◽  
A. P. Gadad

The aim of the present study was to develop a fast dissolving buccal film of dimenhydrinate with good mechanical properties and fast disintegration, producing an acceptable taste when placed in the mouth. The formulations were developed by solvent casting method by using HPMC E5 and HPMC E15 as film formers in different concentrations, propylene glycol as plasticizer and Poloxamer 407 as solubiliser. The resultant films were evaluated for various parameters. the films were found to be satisfactory for all the parameters. All formulations released more than 85% of the drug within 15 minutes. Formulation F7 (1% HPMC E5: 1% HPMC E15) was selected as the optimized formulation based upon the least disintegration time (24.3sec), optimum mechanical properties, percentage drug content (94.96%) and in vitro drug release (95.20%). The ex vivo release was found to be acceptable. Stability studies revealed that the formulation was stable on storage for two months.


2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Upendra Nagaich ◽  
Vandana Chaudhary ◽  
Jaya Nagaich

The aim of the present study was to prepare unidirectional buccal films of buspirone hydrochloride by solvent casting technique. Hydroxypropylmethylcellulose (HPMC K15M) and Eudragit RL-100 were used as polymers in different proportion. Polyethylene glycol 400 and sodium lauryl sulphate were used as plasticizer and permeation enhancer, respectively, in different concentration. In the formulation, total amount of polymer (X1) and percentage of HPMC K15M (X2) were kept as independent variables. Afterwards, statistically optimized process was carried out and two optimized formulations (OF1 and OF2) were developed. The observed results of optimized formulation were showed a greater degree of percentage of similarity with predicted values. The stability studies showed that there was no significant change found in physicochemical properties, in-vitro release, and ex-vivo diffusion studies.


2018 ◽  
Vol 10 (1) ◽  
pp. 115 ◽  
Author(s):  
Napaphak Jaipakdee ◽  
Thaned Pongjanyakul ◽  
Ekapol Limpongsa

Objective: The objectives of this study were to prepare and characterize a buccal mucoadhesive patch using poly (vinyl alcohol) (PVA), poly (vinyl pyrrolidone) (PVP) as a mucoadhesive matrix, Eudragit S100 as a backing layer, and lidocaine HCl as a model drug.Methods: Lidocaine HCl buccal patches were prepared using double casting technique. Molecular interactions in the polymer matrices were studied using attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC) and X-ray diffractometry. Mechanical and mucoadhesive properties were measured using texture analyzer. In vitro permeation of lidocaine HCl from the patch was conducted using Franz diffusion cell.Results: Both of the free and lidocaine HCl patches were smooth and transparent, with good flexibility and strength. ATR-FTIR, DSC and X-ray diffractometry studies confirmed the interaction of PVA and PVP. Mechanical properties of matrices containing 60% PVP were significantly lower than those containing 20% PVP (*P<0.05). Mucoadhesive properties had a tendency to decrease with the concentration of PVP in the patch. The patch containing 60% PVP had significantly lower muco-adhesiveness than those containing 20% PVP (*P<0.05). In vitro permeation revealed that the pattern of lidocaine HCl permeation started with an initial fast permeation, followed by a slower permeation rate. The initial permeation fluxes follow the zero-order model of which rate was not affected by the PVP concentrations in the PVA/PVP matrix.Conclusion: Mucoadhesive buccal patches fabricated with PVA/PVP were successfully prepared. Incorporation of PVP in PVA/PVP matrix affected the strength of polymeric matrix and mucoadhesive property of patches.


2020 ◽  
Vol 13 (9) ◽  
pp. 203 ◽  
Author(s):  
Georgios Eleftheriadis ◽  
Paraskevi Kyriaki Monou ◽  
Eleftherios Andriotis ◽  
Elisavet Mitsouli ◽  
Nikoleta Moutafidou ◽  
...  

Buccal films containing two vitamins, i.e., thiamine hydrochloride (THCl) and nicotinic acid (NA), were fabricated via two-dimensional (2D) inkjet printing. For the preparation of buccal films, solubility studies and rheological evaluations were conducted in distilled water and propylene-glycol (PG) as main solvent and viscosity/surface tension modifier, respectively. The increased solubility in the solvents’ mixture indicated that manufacturing of several doses of the THCl and NA is achievable. Various doses were deposited onto sugar-sheet substrates, by increasing the number of printing passes. The physiochemical characterization (SEM, DSC, FTIR) revealed that inkjet printing does not affect the solid state of the matrix. Water uptake studies were conducted, to compare the different vitamin-loaded formulations. The in vitro release studies indicated the burst release of both vitamins within 10 min, a preferable feature for buccal administration. The in vitro permeation studies indicated that higher concentrations of the vitamins onto the sugar sheet improved the in vitro permeation performance of printed formulations.


2011 ◽  
Vol 55 (4) ◽  
pp. 1650-1660 ◽  
Author(s):  
Alamelu Mahalingam ◽  
Adam P. Simmons ◽  
Shweta R. Ugaonkar ◽  
Karen M. Watson ◽  
Charlene S. Dezzutti ◽  
...  

ABSTRACTPyrimidinediones, a novel class of compounds, have previously been shown to possess antiviral activity at nanomolar concentrations. One member of this class of compounds, IQP-0528, was selected as the lead molecule for formulation development owing to its stability at physiologically relevant conditions, wide therapeutic window, and antiviral activity in the nanomolar range. Here, we report the development of two vaginal gels—3.0% hydroxyethyl cellulose (HEC) formulation and a 0.65% Carbopol formulation—for the sustained delivery of IQP-0528. Stability studies under accelerated conditions confirmed the chemical stability of IQP-0528 and mechanical stability of the gel formulation for 3 months.In vitrorelease studies revealed that diffusion-controlled release of IQP-0528 occurred over 6 h, with an initial lag time of approximately 1 h. Based on the drug release profile, the 3.0% HEC gel was selected as the lead formulation for safety and activity evaluations. Thein vitroandex vivosafety evaluations showed no significant loss in cell viability or significant inflammatory response after treatment with a 3.0% HEC gel containing 0.25% IQP-0528. In anin vitroHIV-1 entry inhibition assay, the lead formulation showed an 50% effective concentration of 0.14 μg/ml for gel in culture media, which corresponds to ∼0.001 μM IQP-0528. The antiviral activity was further confirmed by using polarized cervical explants, in which the formulation showed complete protection against HIV infection. In summary, these results are encouraging and warrant further evaluation of IQP-0528 gel formulations inin vivomodels, as well as the development of alternative formulations for the delivery of IQP-0528 as a microbicide.


2021 ◽  
Vol 20 (11) ◽  
pp. 2241-2248
Author(s):  
M. Yasmin Begum ◽  
Ali Alqahtani

Purpose: To formulate and characterize tizanidine hydrochloride (TZN) and piroxicam (PRX)-loaded bilayer mucoadhesive buccal films with an intention to improve the bioavailability and patient compliance in pain management.Methods: Bilayer buccal films were prepared by solvent evaporation technique using hydroxypropyl methylcellulose (HPMC) 15cps and polyvinylpyrrolidone (PVP K30 as immediate release (IR) layer forming polymers and HPMC K15 M, PVP K 90 along with various muco adhesive polymers (Carbopol P934, sodium alginate, etc), as sustained release (SR) layer forming polymers. The prepared films werecharacterized for thickness, weight variation, folding endurance, surface pH, swelling index,mucoadhesive strength, in vitro residence time, in vitro drug release, ex vivo permeation and drug release kinetics.Results: The prepared films were of largely uniform thickness, weight and drug content. Moisture loss (%) and folding endurance were satisfactory. Surface pH was compatible with salivary fluid. Disintegration time was 85 s for F1 and 115 s for F2 of IR films. In vitro dissolution studies showed 99.12 ± 1.2 % (F1) and 90.36 ± 1.8 % (F2) were released in 45 min. Based on the above results, F1 was chosen as the optimum formulation to be combined with SR layer of TZN. Amongst the SR layers of TZN in vitro drug release. The findings show that of F2 was 98.38 ± 0.82 % and correlated with ex vivo release. Drug release followed zero order release kinetics and mechanism of drug release was non-Fickian type diffusion. In vitro residence time was greater than 5 h.Conclusion: The findings show that the bilayer buccal films demonstrate the dual impact of deliveringPRX instantly from the IR layer, with good controlled release and permeation of TZN from the SR layer, thus providing enhanced therapeutic efficacy, drug bioavailability and patient compliance.


Author(s):  
ABHIBRATA ROY ◽  
REEGAN AREES ◽  
MADHAVI BLR

Objective: Rupatadine fumarate (RF) is an anti-allergic drug indicated for the treatment of allergic rhinitis. It has low oral bioavailability due to its poor aqueous solubility and extensive hepatic first pass metabolism. In the present work, oral fast-dissolving films (OFDF) have been formulated and evaluated to facilitate dissolution in the oral cavity itself. Methods: Pullulan and HPMC (5, 15 cps) were employed as film formers and six formulations were tried. The physicochemical compatibility between drug and the polymers was studied by FTIR spectroscopy. RF-beta-cyclodextrin (BCD) inclusion complex was initially prepared and evaluated. The inclusion complex was incorporated into the film. OFDF were formulated and prepared by solvent casting method. The film size for one dose was 2 × 2 cm. The films were evaluated for various film parameters including disintegration time and drug release. Results: Preliminary film studies indicated % of film former solution to be between 3 and 5% for good appearance, mechanical strength, and quick disintegration. Solubility enhancement of RF is almost 40-fold from its BCD inclusion complex. Drug content in the films ranged between 83 and 90%. The pH ranged between 6 and 7 for all the formulations. All OFDF of RF disintegrated within one minute. With higher viscosity grade of HPMC, disintegration was comparatively slower and so was the drug release. Pullulan based films also showed desirable properties. F3 had disintegration time was 28 s and % drug release was 92% in 180 s. Conclusion: OFDF of RF could be formulated employing pullulan and HPMC low viscosity grades by solvent casting method. F3 containing HPMC E5 at 37% by weight of dry film showed desirable film properties. Stability studies indicated that there was no significant change in the films with respect to physicochemical properties and in vitro release.


2020 ◽  
Vol 10 (3-s) ◽  
pp. 107-110
Author(s):  
Aashish Marskole ◽  
Sailesh Kumar Ghatuary ◽  
Abhishek Parwari ◽  
Geeta Parkhe

Oral fast dissolving midodrine hydrochloride films prepared by solvent casting method, PEG 400 was the selected plasticizers, incorporating superdisintegrants such as croscarmellose sodium (CCS) and sodium starch glycolate (SSG) to achieve the goal. Drug content, weight variability, film thickness, disintegration time, endurance, percentage of moisture content, and in vitro dissolution tests were analyzed for the prepared films. In all formulations, the tensile strength value was found from 0.965±0.045 and 1.256±0.032 and the folding capacity was over 100. The assay values ranged from 97.98±0.25 to 99.89±0.36 percent for all formulations. The disintegration time was ranging between 55±9 to 120±6 sec, the minimum time for disintegration was found in formulation F5 (55±9). The prepared F5 formulation shows greater release of the drug (99.25±0.41 percent) within 15 min relative to other formulations. As the drug having low solubility, fast disintegration may leads to more drug availability for dissolution, resulting in faster absorption in systemic circulation increased systemic availability of drug leads to quick onset of action which is prerequisite for hypertension. Keywords: Midodrine hydrochloride, Fast dissolving films, Solvent casting method, Superdisintegrants.


Sign in / Sign up

Export Citation Format

Share Document