Controlled growth of indium oxide nanowires for gas sensing application

Author(s):  
Dang Son ◽  
Nguyen Duy ◽  
Nguyen Hoa

Background: The In2O3 nanowires have attracted enormous attention for gas sensor application due to their advantageous features. However, the controlled synthesis of In2O3 nanowires for gas sensors is vital and challenging because the gas sensing performance of the nanowires is strongly dependent on their characteristics. Methods: Here, we fabricated In2O3 nanowires on SiO2/Si substrate via a simple thermal vapor deposition method with the Au thin film as the catalyst. The growth temperatures were controlled to obtain desired nanowires of small size. The grown In2O3 nanowires were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. The ethanol gas sensing properties were tested under the dynamic flow of dry air and analytic gas. The synthesized In2O3 nanowires have the potential for use in ethanol gas sensor application. Results: In2O3 nanostructures grown at different temperatures ranging from 600 to 900oC have different morphologies. The sample grown at 600oC had a morphology of nanowire, with a diameter of approximately 80 nm and a length of few micrometers. Nanowires grown at 600 °C were composed of oxygen (O) and indium (In) elements, with the atomic ratio of [O]/[In] = 3/5. The nanowire was a single phase cubic structure of In2O3 crystal. The In2O3 nanowire sensor showed typical n-type semiconducting sensing properties. The response decreased from 130 to 75 at 100 ppm when the working temperature decreased from 450 °C to 350 °C. Conclusion: The nanowires grown at 600 °C by the thermal vapor deposition method had the best morphology with a small diameter of about 80 nm and a length of few micrometers. The In2O3 nanowires had a good ability to sense ethanol at varying concentrations in the range of 20 ppm to 100 ppm. The In2O3 nanowires can be used as building blocks for future nanoscale gas sensors.

Author(s):  
S. Kumar ◽  
P. Gowthaman ◽  
J. Deenathayalan

Electro spinning technology combined with chemical precipitation method and high-temperature calcination was used to prepare SnO2-NiO composite semiconductor nanofibers with different Sn content. Scanning electron microscope (SEM), X-ray diffractometer (XRD) and energy dispersive X-ray spectrometer (EDS) were used to characterize the morphology, structure and content of various elements of the sample. Using ethanol as the target gas, the gas sensing properties of SnO2-NiO nanofibers and the influence of Sn content on the gas sensing properties of composite nanofibers were explored. The research results show that SnO2-NiO composite nanofibers have a three-dimensional network structure, and the SnO2 composite can significantly enhance the gas sensitivity of NiO nanofibers. With increase of SnO2 content, the response sensitivity of composite fibers to ethanol gas increases, and the response sensitivity of composite nanofibers with the highest response to ethanol gas with a volume fraction of 100×10-6 at the optimal working temperature of 160℃ are13.4;It is 8.38 times the maximum response sensitivity of NiO nanofibers. Compared with the common ethanol gas sensor MQ-3 on the market, SnO2-NiO composite nanofibers have a lower optimal working temperature and higher response sensitivity, which has certain practical application value


2011 ◽  
Vol 492 ◽  
pp. 308-311 ◽  
Author(s):  
Wu Bin Gao ◽  
Cheng Dong ◽  
Xu Liu ◽  
Yun Han Ling ◽  
Jia Lin Sun

Gas sensor based on point contact tungsten trioxide (WO3) was prepared by in-situ induction-heating thermal oxidation of tungsten filaments. X-ray diffractometry (XRD) and field emission scanning electron microscopy (FESEM) were employed to analyze the phase and the morphology of the fabricated thin films. The results showed that the WO3films exhibited a monoclinic phase and were composed of hierarchical micro and nano crystals. The NO2(1-8 ppm) sensing properties of the point contact sensors based on Pure and Au-sputtering doped (2.5 at%) WO3films were investigated. The results showed that the gas sensing properties of the Au (2.5 at%) doped WO3sensors were superior to those of the undoped. The obtained point contact WO3sensor exhibited the maximum NO2gas response at 100°C.


Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1902
Author(s):  
Sijie Wang ◽  
Weigen Chen ◽  
Jian Li ◽  
Zihao Song ◽  
He Zhang ◽  
...  

The long-term stability and the extension of the use time of gas sensors are one of the current concerns. Lowering the working temperature is one of the most effective methods to delay aging. In this paper, pure MoS2 and ZnO-MoS2 nanocomposites were successfully prepared by the hydrothermal method, and the morphological characteristics were featured by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Pure MoS2 and ZnO-MoS2 nanocomposites, as a comparison, were used to study the aging characteristic. The sensing properties of the fabricated gas sensors with an optimal molar ratio ZnO-MoS2 (Zn:Mo = 1:2) were recorded, and the results exhibit a high gas-sensing response and good repeatability to the acetylene detection. The working temperature was significantly lower than for pure MoS2. After aging for 40 days, all the gas-sensing response was relatively attenuated, and pure MoS2 exhibits a faster decay rate and lower gas-sensing response than nanocomposites. The better gas-sensing characteristic of nanocomposites after aging was possibly attributed to the active interaction between ZnO and MoS2.


2014 ◽  
Vol 975 ◽  
pp. 189-193 ◽  
Author(s):  
Gisane Gasparotto ◽  
Talita Mazon ◽  
Gisele Gasparotto ◽  
Maria Aparecida Zaghete ◽  
Leinig Antonio Perazolli ◽  
...  

The present work shows a study about the growing of ZnO nanorods by chemical bath deposition (CBD) and its application as gas sensor. It was prepared ZnO nanorods and Au decorated ZnO nanorods and the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and gas sensing response measurements. The results obtained by XRD show the growth of ZnO phase. It was possible to observe the formation of uniform dense well-aligned ZnO nanorods. The results obtained also revealed that Ag nanoparticles have decorated the surface of ZnO nanorods successfully. Au nanoparticles with diameter of a few nanometers were distributed over the ZnO surface nanorods. The gas sensing response measurements showed a behavior of n type semiconductor. Furthermore, the Au-functionalized ZnO nanorods gas sensors showed a considerably enhanced response at 250 and 300 °C.


Author(s):  
Priya Gupta ◽  
Savita Maurya ◽  
Narendra Kumar Pandey ◽  
Vernica Verma

: This review paper encompasses a study of metal-oxide and their composite based gas sensors used for the detection of ammonia (NH3) gas. Metal-oxide has come into view as an encouraging choice in the gas sensor industry. This review paper focuses on the ammonia sensing principle of the metal oxides. It also includes various approaches adopted for increasing the gas sensitivity of metal-oxide sensors. Increasing the sensitivity of the ammonia gas sensor includes size effects and doping by metal or other metal oxides which will change the microstructure and morphology of the metal oxides. Different parameters that affect the performances like sensitivity, stability, and selectivity of gas sensors are discussed in this paper. Performances of the most operated metal oxides with strengths and limitations in ammonia gas sensing application are reviewed. The challenges for the development of high sensitive and selective ammonia gas sensor are also discussed.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2103 ◽  
Author(s):  
Tae-Hee Han ◽  
So-Young Bak ◽  
Sangwoo Kim ◽  
Se Hyeong Lee ◽  
Ye-Ji Han ◽  
...  

This paper introduces a method for improving the sensitivity to NO2 gas of a p-type metal oxide semiconductor gas sensor. The gas sensor was fabricated using CuO nanowires (NWs) grown through thermal oxidation and decorated with ZnO nanoparticles (NPs) using a sol-gel method. The CuO gas sensor with a ZnO heterojunction exhibited better sensitivity to NO2 gas than the pristine CuO gas sensor. The heterojunction in CuO/ZnO gas sensors caused a decrease in the width of the hole accumulation layer (HAL) and an increase in the initial resistance. The possibility to influence the width of the HAL helped improve the NO2 sensing characteristics of the gas sensor. The growth morphology, atomic composition, and crystal structure of the gas sensors were analyzed using field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy, and X-ray diffraction, respectively.


2021 ◽  
Vol 16 (3) ◽  
pp. 363-367
Author(s):  
Gaoqi Zhang ◽  
Fan Zhang ◽  
Kaifang Wang ◽  
Tao Tian ◽  
Shanyu Liu ◽  
...  

Accurate and real-time detection of formaldehyde (HCHO) in indoor air is urgently needed for human health. In this work, a ceramic material (WO3·H2O) with unique structure was successfully prepared using an efficient hydrothermal method. The crystallinity, morphology and microstructure of the as-prepared sensing material were analyzed by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) as well as transmission electron microscope (TEM). The characterization results suggest that the as-prepared sample is composed of square-like nanoplates with uneven surface. Formaldehyde vapor is utilized as the target gas to investigate gas sensing properties of the synthesized novel nanoplates. The testing results indicate that the as-fabricated gas sensor exhibit high gas response and excellent repeatability to HCHO gas. The response value (Ra/Rg) is 24.5 towards 70 ppm HCHO gas at 350 °C. Besides, the gas sensing mechanism was described.


2022 ◽  
Author(s):  
Tianchen Jiang ◽  
xin liu ◽  
jianbo sun

Abstract ZnO quantum dots sensitized SnO2 porous nanowires were fabricated and designed for UV excitation gas sensor. The ZnO/SnO2 composite (SZQ1%) with the molar proportion of 1:100 exhibits excellent sensing properties to NO2 gas under UV irradiation at 40oC. The humidity stability of SZQ1% was also measured and discussed by DC reversed circuit and complex impedance curves. The gas sensing mechanism is well discussed and illustrated to the ZnO quantum dots sensitized and the increased photo-generated carriers under UV irradiation.


2019 ◽  
Vol 6 (8) ◽  
pp. 085075 ◽  
Author(s):  
S Ramu ◽  
T Chandrakalavathi ◽  
G Murali ◽  
K Sunil Kumar ◽  
A Sudharani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document