scholarly journals Optimization of Process Parameters for Cholesterol Oxidase Production by Streptomyces Olivaceus MTCC 6820

2019 ◽  
Vol 13 (1) ◽  
pp. 47-58 ◽  
Author(s):  
Shraddha Sahu ◽  
Shailendra Singh Shera ◽  
Rathindra Mohan Banik

Background:Streptomyces olivaceusMTCC 6820 is a potent microorganism for cholesterol oxidase (ChOx) production through the submerged fermentation process. Statistical optimization of the process parameters for submerged fermentation enhances the production of enzymes.Objective:This work is aimed to optimize the culture conditions for the fermentative production of cholesterol oxidase byStreptomyces olivaceusMTCC 6820 using combined Response Surface Methodology (RSM) and Artificial Neural Network (ANN) techniques.Methods:The ChOx production (U/ml) was modeled and optimized as a function of six independent variables (culture conditions) using RSM and ANN.Results:ChOx production enhanced 2.2 fold,i.e1.9 ± 0.21 U/ml under unoptimized conditions to 4.2 ± 0.51 U/ml after the optimization of culture conditions. Higher coefficient of determination (R2= 97.09 %) for RSM and lower values of MSE (0.039) and MAPE (3.46 %) for ANN proved the adequacy of both the models. The optimized culture conditions predicted by RSMvs. ANN were pH (7.5), inoculum age (48 h), inoculum size (11.25 % v/v), fermentation period (72 h), incubation temperature (30°C) and shaking speed (175 rpm).Conclusion:The modeling, optimization and prediction abilities of both RSM and ANN methodologies were compared. The values of Pearson correlation coefficient (r) (ANN0.98> RSM0.95), regression coefficient (R2) between experimental activity, RSM and ANN predicted ChOx activity, respectively (ANN0.96> RSM0.90) and Absolute Average Deviation (AAD) for (ANN3.46%< RSM9.87%) substantiated better prediction ability of ANN than RSM. These statistical values indicated the superiority of ANN in capturing the non-linear behavior of the system.

2020 ◽  
pp. 56-67
Author(s):  
Muharagi Samwel Jacob ◽  
Li Xiao ◽  
Mabagala Frank Stephano ◽  
Xu Anran

Aims: To optimize the culture conditions and medium components for the production of mycelial biomass of A. delicata under submerged fermentation. Place and Duration of Study: China–Zambia Agricultural demonstration center and Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, China between July 2019 and June 2020. Methodology: In this study, a single factor at a time method was employed in the optimization of submerged culture conditions and medium components for the production of mycelial biomass of A. delicata (strain YD 99). Each factor was screened independently while other factors were kept constant. Results: The findings of this study demonstrate that the optimal culture conditions obtained were as follows: carbon source (Glucose) 20 gl-1, pH 6.0, nitrogen source (Yeast extract) 2 gl-1, mineral elements (K2HPO4+MgSO4.7H20) 2gl-1, and incubation temperature 25°C. The application of these optimal culture conditions produced a maximum concentration of 7.34gl-1 mycelial biomass of A. delicata. Conclusion: Consequently, our results indicated that the optimization of culture conditions and medium components is of significant importance for the cultivation of A. delicata.


Author(s):  
Suman Mehla ◽  
Soumana Datta

Introduction: Celluloses are important industrial enzymes and find application in several industrial processes. Effects of pH, temperature, incubation time, source of carbon and nitrogen were tested in submerged fermentation process in the production of cellulose by Curvularia pallescens isolated from textile effluent. Aims: The present study was attempted in a fungus; Curvularia pallescens isolated from textile effluent for maximizing its production under optimal conditions in submerged fermentation by using inexpensive substrate wheat bran. Study Design: The production medium was prepared in distilled water, supplemented with 4.5% wheat bran, 0.05% KCl, 0.2% KH2PO4, (carbon source), yeast extract (nitrogen source), maintained with pH of  5.5  and incubated at 28ºC for 120 h was found optimal for the production of cellulose. Results: The test fungus achieved maximum FPA activity followed by cellobiohydrolase, endoglucanase and β-glucosidase activity at  46.76, 42.06, 26.94 and 3.56 U/ml respectively at pH 5.5  (Fig. 4). The temperature of 280C produced maximum cellulase activity. Highest activity recorded was of FPA (38.94 U/ml), followed by cellobiohydrolase (30.29 U/ml), endoglucanase (22.41 U/ml), and β-glucosidase (3.98 U/ml). The effect of process parameters such as the effect of temperature, pH and inoculum size was investigated. Maximum cellulase and xylanase having an enzyme activity of 694.45 and 931.25 IU, respectively, were produced at 30ºC incubation temperature. Conclusion: The effect of process parameters such as effect of temperature, pH and inoculum size was also investigated. The production of primary metabolites by microorganisms is highly influenced by their growth, which is determined by the availability of the nutrients in the substrates.


2021 ◽  
Vol 13 (9) ◽  
pp. 5207
Author(s):  
Zed Zulkafli ◽  
Farrah Melissa Muharam ◽  
Nurfarhana Raffar ◽  
Amirparsa Jajarmizadeh ◽  
Mukhtar Jibril Abdi ◽  
...  

Good index selection is key to minimising basis risk in weather index insurance design. However, interannual, seasonal, and intra-seasonal hydroclimatic variabilities pose challenges in identifying robust proxies for crop losses. In this study, we systematically investigated 574 hydroclimatic indices for their relationships with yield in Malaysia’s irrigated double planting system, using the Muda rice granary as a case study. The responses of seasonal rice yields to seasonal and monthly averages and to extreme rainfall, temperature, and streamflow statistics from 16 years’ observations were examined by using correlation analysis and linear regression. We found that the minimum temperature during the crop flowering to the maturity phase governed yield in the drier off-season (season 1, March to July, Pearson correlation, r = +0.87; coefficient of determination, R2 = 74%). In contrast, the average streamflow during the crop maturity phase regulated yield in the main planting season (season 2, September to January, r = +0.82, R2 = 67%). During the respective periods, these indices were at their lowest in the seasons. Based on these findings, we recommend temperature- and water-supply-based indices as the foundations for developing insurance contracts for the rice system in northern Peninsular Malaysia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daisuke Miyamori ◽  
Takeshi Uemura ◽  
Wenliang Zhu ◽  
Kei Fujikawa ◽  
Takaaki Nakaya ◽  
...  

AbstractThe recent increase of the number of unidentified cadavers has become a serious problem throughout the world. As a simple and objective method for age estimation, we attempted to utilize Raman spectrometry for forensic identification. Raman spectroscopy is an optical-based vibrational spectroscopic technique that provides detailed information regarding a sample’s molecular composition and structures. Building upon our previous proof-of-concept study, we measured the Raman spectra of abdominal skin samples from 132 autopsy cases and the protein-folding intensity ratio, RPF, defined as the ratio between the Raman signals from a random coil an α-helix. There was a strong negative correlation between age and RPF with a Pearson correlation coefficient of r = 0.878. Four models, based on linear (RPF), squared (RPF2), sex, and RPF by sex interaction terms, were examined. The results of cross validation suggested that the second model including linear and squared terms was the best model with the lowest root mean squared error (11.3 years of age) and the highest coefficient of determination (0.743). Our results indicate that the there was a high correlation between the age and RPF and the Raman biological clock of protein folding can be used as a simple and objective forensic age estimation method for unidentified cadavers.


2021 ◽  
Vol 11 (13) ◽  
pp. 5932
Author(s):  
Daniela Luminita Ichim ◽  
Liliana Sachelarie ◽  
Alexandra Burlui

(1) Background: The appearance and progression of carious lesions represent a complex phenomenon of interactions of microbial factors (the action of bacteria on the tooth), of the factors related to the host, to the diet, and to the time factor. Which hasan influence on the rate of microbismof the oral cavity on the installation of carious disease? (2) Methods: In order to correctly assess the cariogenic risk of an individual, it is recommended to perform twoor more tests based on different principles (microbiological, clinical, epidemiological). The representative data series for the investigation were analyzed statistically and by applying the Pearson correlation test considering the coefficient of determination R for all pairs of data series. (3) Results: Salivary tests played animportant role in establishing control sessions, in carrying out prophylactic caries therapy, and establishing prognosis. The existence of a statistical associationwas confirmed between the prevalence of dental caries and the results of salivary tests for the study group. (4) Conclusions: The results of the saliva tests can be used in oral health promotion.


2013 ◽  
Vol 58 (4) ◽  
pp. 318-324 ◽  
Author(s):  
M.H. Sun ◽  
Y.M. Chen ◽  
J.F. Liu ◽  
S.D. Li ◽  
G.Z. Ma

2021 ◽  
Vol 25 (1) ◽  
pp. 574-586
Author(s):  
Marta Bertolini ◽  
Fosca Conti

Abstract Carbon dioxide emissions are strongly related to climate change and increase of global temperature. Whilst a complete change in producing materials and energy and in traffic and transportation systems is already in progress and circular economy concepts are on working, Carbon Capture and Storage (CCS) and Carbon Capture and Utilisation (CCU) represent technically practicable operative strategies. Both technologies have main challenges related to high costs, so that further advanced research is required to obtain feasible options. In this article, the focus is mainly on CCU using microalgae that are able to use CO2 as building block for value-added products such as biofuels, EPS (Extracellular Polymeric Substances), biomaterials and electricity. The results of three strains (UTEX 90, CC 2656, and CC 1010) of the microalgal organism Chlamydomonas reinhardtii are discussed. The results about ideal culture conditions suggest incubation temperature of 30 °C, pH between 6.5 and 7.0, concentrations of acetate between 1.6 and 2.3 g L–1 and of ammonium chloride between 0.1 and 0.5 g L–1, the addition of glucose This green microalga is a valid model system to optimize the production of biomass, carbohydrates and lipids.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Samuel Osah ◽  
Akwasi A. Acheampong ◽  
Collins Fosu ◽  
Isaac Dadzie

The growing demand for Global Navigation Satellite System (GNSS) technology has necessitated the establishment of a vast and ever-growing network of International GNSS Service (IGS) tracking stations worldwide. The IGS provides highly accurate and highly reliable daily time-series Zenith Tropospheric Delay (ZTD) products using data from the member sites towards the use of GNSS for precise geodetic, climatological, and meteorological applications. However, if for reasons like poor internet connectivity, equipment failure, and power outages, the IGS station is inaccessible or malfunctioning, and gaps are created in the data archive resulting in degrading the quality of the ZTD and precipitable water vapour (PWV) estimation. To address this challenge as a means of providing an alternative data source to improve the continuous availability of ZTD data and as a backup data in the event that the IGS site data are missing or unavailable in West Africa, this paper compares the sitewise operational Vienna Mapping Functions 3 (VMF3) ZTD product with the IGS final ZTD product over five IGS stations in West Africa. Eight different statistical evaluation metrics, such as the mean bias (MB), mean absolute error (MAE), root mean squared error (RMSE), Pearson correlation coefficient (r), coefficient of determination (r2), refined index of agreement (IAr), Nash–Sutcliffe coefficient of efficiency (NSE), and the fraction of prediction within a factor of two (FAC2), are employed to determine the degree of agreement between the VMF3 and IGS tropospheric products. The results show that the VMF3-ZTD product performed excellently and matches very well with the IGS final ZTD product with an average MB, MAE, RMSE, r, r2, NSE, IAr, and FAC2 of 0.38 cm, 0.87 cm, 1.11 cm, 0.988, 0.976, 0.967, 0.992, and 1.00 (100%), respectively. This result is an indication that the VMF3-ZTD product is accurate enough to be used as an alternative source of ZTD data to augment the IGS final ZTD product for positioning and meteorological applications in West Africa.


2020 ◽  
Vol 5 (1) ◽  
pp. 45-53
Author(s):  
Safa’a Ahmad Al Masri ◽  
Siti Musliha Mat Rasid

In the current study, a total of 86 soccer’s players with mean age of 14 years drawn from Terengganu soccer academy were tested in performing 10 parameters aiming at determining the performance of those players based on assessing the contribution of each activity and its corresponding significant level. The 10 performance related parameters involved anthropometry (BMI), fitness test (agility, coordination, muscular endurance (push and sit up), power, YoYo level), and football skill test (dribbling with ball, dribbling without ball and juggling).  All the parameters testing is carried out based on international standard and performed by well-trained staff.  The Pearson correlation analysis was used to achieve the objective in this study. Result shows a positive correlation between the two types of muscular parameters; the power is influenced by BMI and coordination; the specific football tests are highly impacted by the power and agility. The coefficient of determination  and the significance level -values show that the parameters that can be significantly considered are the anthropometric BMI (0.020), agility (0.025), muscular endurance (0.039 and 0.043), power (0.039), special football test without the ball (0.041), and juggling (0.046). The coordination, YoYo, football special test with the ball were not found to be significantly accounted for preparing the young players to achieve the required performance. Based on the results of the coefficient of determination and the significance -values of the parameters, a model was proposed to determine the highest and lowest parameters that play important roles in the selection of young players.


2019 ◽  
Vol 12 (1) ◽  
pp. 93
Author(s):  
Nichole Gosselin ◽  
Vasit Sagan ◽  
Matthew Maimaitiyiming ◽  
Jack Fishman ◽  
Kelley Belina ◽  
...  

Remotely-sensed identification of ozone stress in crops can allow for selection of ozone resistant genotypes, improving yields. This is critical as population, food demand, and background tropospheric ozone are projected to increase over the next several decades. Visual scores of common ozone damage have been used to identify ozone-stress in bio-indicator plants. This paper evaluates the use of a visual scoring metric of ozone damage applied to soybeans. The scoring of the leaves is then combined with hyperspectral data to identify spectral indices specific to ozone damage. Two genotypes of soybean, Dwight and Pana, that have shown different sensitivities to ozone, were grown and visually scored for ozone-specific damage on multiple dates throughout the growing season. Leaf reflectance, foliar biophysical properties, and yield data were collected. Additionally, ozone bio-indicator plants, snap beans, and common milkweed, were investigated with visual scores and hyperspectral leaf data for comparison. The normalized difference spectral index (NDSI) was used to identify the significant bands in the visible (VIS), near infrared (NIR), and shortwave infrared (SWIR) that best correlated with visual damage score when used in the index. Results were then compared to multiple well-established indices. Indices were also evaluated for correlation with seed and pod weight. The ozone damage scoring metric for soybeans evaluated in August had a coefficient of determination of 0.60 with end-of-season pod weight and a Pearson correlation coefficient greater than 0.6 for photosynthetic rate, stomatal conductance, and transpiration. NDSI [R558, R563] correlated best with visual scores of ozone damage in soybeans when evaluating data from all observation dates. These wavelengths were similar to those identified as most sensitive to visual damage in August when used in NDSI (560 nm, 563 nm). NDSI [R560, R563] in August had the highest coefficient of determination for individual pod weight (R2 = 0.64) and seed weight (R2 = 0.54) when compared against 21 well-established indices used for identification of pigment or photosynthetic stress in plants. When evaluating use of spectral bands in NDSI, longer wavelengths in SWIR were identified as more sensitive to ozone visual damage. Trends in the bands and biophysical properties of the soybeans combined with evaluation of ozone data indicate likely timing of significant ozone damage as after late-July for this season. This work has implications for better spectral detection of ozone stress in crops and could help with efforts to identify ozone tolerant varieties to increase future yield.


Sign in / Sign up

Export Citation Format

Share Document