scholarly journals Experimental Study of CO2 Absorption in Potassium Carbonate Solution Promoted by Triethylenetetramine

2018 ◽  
Vol 12 (1) ◽  
pp. 67-79 ◽  
Author(s):  
Rouzbeh Ramezani ◽  
Saeed Mazinani ◽  
Renzo Di Felice

Background: Separation of CO 2 as the major cause of global warming is essential. In this work, potassium carbonate (K 2 CO 3 ) solution was selected as a base solvent for CO 2 absorption due to its ease of regeneration energy, low cost and low environmental impact. However, the absorption rate of CO 2 with K 2 CO 3 needs to be improved by adding a suitable promoter. Therefore, the performance of CO 2 in K 2 CO 3 solution promoted by triethylenetetramine (TETA) in terms of absorption capacity and absorption rate of CO2 was studied. Method: Experiments were conducted at a total concentration of 2.5 (M) with different TETA mole fractions at temperatures of 303, 313 and 323 K, and CO2 partial pressure up to 30 kPa using a stirred cell reactor. The effect of CO2 partial pressure, temperature and concentration of TETA on absorption capacity and absorption rate of CO2 in K2CO3+TETA solution was discussed in detail. Results: The CO2 loading capacity obtained in this work was compared with monoethanolamine (MEA) and a better performance was observed for K2CO3+TETA solution. In addition, experimental results revealed that the addition of TETA to K2CO3 improved the CO2 reaction rate. Finally, the response surface methodology was employed to correlate the CO2 solubility. It was found that the correlated data are in good agreement with the experiment results. Conclusion: As an overall conclusion, the solution of K2CO3+TETA can be used as a promising absorbent in post combustion CO2 capture processes.

1998 ◽  
Vol 547 ◽  
Author(s):  
T. Ohashi ◽  
K. Nakagawa

AbstractLithium zirconate, which reacts with CO2 reversibly at temperatures over 500°C, is expected to find wider application than conventional CO2 absorbents, as the latter can be used only at room temperature. We examined the effect of potassium carbonate, which had usually been added to facilitate the formation of lithium zirconate in the past, on the kinetics of CO2 absorption reaction. The result shows that the CO2 absorption rate of lithium zirconate powder is extremely accelerated by the potassium carbonate additive. We conclude that this acceleration results from the formation of a eutectic carbonate composed of Li2CO3 and K2CO3.


2012 ◽  
Vol 18 (1) ◽  
pp. 105-110 ◽  
Author(s):  
Young Eun Kim ◽  
Jeong Ho Choi ◽  
Sung Chan Nam ◽  
Yeo Il Yoon

2014 ◽  
Vol 353 ◽  
pp. 193-198
Author(s):  
F.J. Tamajón ◽  
Estrella Álvarez ◽  
F. Cerdeira ◽  
M.E. Vázquez

The use of tertiary methyldiethanolamine (MDEA) as an absorbent for the CO2 removal from process gas streams has increased due to its advantages over primary and secondary amines. Methanol is also widely used as an organic physical solvent for the CO2 capture. Mixed solvents are expected to have a higher capacity for the acid gases than the solvent alone. The chemical absorption rate of CO2 was measured in mixtures of MDEA (weight 5%, 15% and 30%) and water-methanol solutions at different % weight relations by using a stirred-cell reactor with plane gas-liquid interface. Experiments provided data measured at a range from 283.15 K to 313.15 K operation temperatures. Results show how the solubility of CO2 varies in all systems involved focusing on temperature and concentration changes. The solubility of CO2 in the aqueous mixed MDEA with methanol as a solvent becomes significantly greater than in the aqueous amine alone.


2021 ◽  
Vol 419 ◽  
pp. 129517
Author(s):  
Bong Keun Choi ◽  
Seung-Mo Kim ◽  
Kyung-Min Kim ◽  
Ung Lee ◽  
Jeong Ho Choi ◽  
...  

2012 ◽  
Vol 452-453 ◽  
pp. 1424-1428
Author(s):  
Han Min Tian ◽  
Li Jia Guo ◽  
Wen Feng Duan ◽  
Rui Xia Yang ◽  
Feng Lan Tian

By analyzing the transmitionce and heat rate of insulating antireflection films conposed by refractive-index adjustable SiO2 layer and TiO2 layers, the optimum combination of antireflection films of BIPV is obtained. The absorption rate at the ultraviolet part that wavelenght excessive inadequate 400nm of the optimized fils is 99.9%, which are directly designed on the surface of the low iron tempered glass panel of BIPV, and in the wavelength range 400nm-800nm, the visible light transmitionce rate is up to 99.5%, and the heat that wavelenght excessive 800nm is reflected of 20%. For the multilayer heat insulation films are composed with the same kind of material while with different refractive indexes, there is no projecting stress between these films and no constraints during the production process of different films for the possible low cost heat insulating of BIPV.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1268
Author(s):  
Yan Wang ◽  
Shuhang Ren ◽  
Yucui Hou ◽  
Weize Wu

Up to now, many kinds of deep eutectic solvents (DESs) were investigated for the capture of acidic gases from flue gases. In this review, non-functionalized and functionalized DESs, including binary and ternary DESs, for SO2, CO2 and NO capture, are summarized based on the mechanism of absorption, physical interaction or chemical reaction. New strategies for improving the absorption capacity are introduced in this review. For example, a third component can be introduced to form a ternary DES to suppress the increase in viscosity and improve the CO2 absorption capacity. DESs, synthesized with halogen salt hydrogen bond acceptors (HBAs) and functionalized hydrogen bond donors (HBDs), can be used for the absorption of SO2 and NO with high absorption capacities and low viscosities after absorption, due to physicochemical interaction between gases and DESs. Emphasis is given to introducing the absorption capacities of acidic gases in these DESs, the mechanism of the absorption, and the ways to enhance the absorption capacity.


1998 ◽  
Vol 88 (1) ◽  
pp. 66-71 ◽  
Author(s):  
Hiromichi Bito ◽  
Yukako Ikeuchi ◽  
Kazuyuki Ikeda

Background Sevoflurane anesthesia is usually performed with fresh gas flow rates greater than 2 l/min due to the toxicity of compound A in rats and limited clinical experience with sevoflurane in low-flow systems. However, to reduce costs, it would be useful to identify ways to reduce compound A concentrations in low-flow sevoflurane anesthesia. This goal of this study was to determine if compound A concentrations can be reduced by using soda lime with water added. Methods Low-flow sevoflurane anesthesia (fresh gas flow of 1 l/min) was performed in 37 patients using soda lime with water added (perhydrated soda lime) or standard soda lime as the carbon dioxide (CO2) absorbent. The soda lime was not changed between patients, but rather was used until CO2 rebreathing occurred. The perhydrated soda lime was prepared by spraying 100 ml distilled water onto 1 kg fresh soda lime, and water was added only when a new bag of soda lime was placed into the canister. Compound A concentrations in the circle system, soda lime temperatures, inspired and end-tidal CO2 and end-tidal sevoflurane concentrations, and CO2 elimination by the patient were measured during anesthesia. Results Compound A concentrations were significantly lower for the perhydrated soda lime (1.9 +/- 1.8 ppm; means +/- SD) than for the standard soda lime (13.9 +/- 8.2 ppm). No differences were seen between the two types of soda lime with regard to the temperature of the soda lime, end-tidal sevoflurane concentrations, or CO2 elimination. Compound A concentration decreased with the total time of soda lime use for both types of soda lime. The CO2 absorption capacity was significantly less for perhydrated soda lime than for standard soda lime. Conclusions Compound A concentrations in the circuit can be reduced by using soda lime with water added. The CO2 absorption capacity of the soda lime is reduced by adding water to it, but this should not be clinically significant.


Sign in / Sign up

Export Citation Format

Share Document