scholarly journals The Role of TNF-α as a Proinflammatory Cytokine in Pathological Processes

2019 ◽  
Vol 13 (1) ◽  
pp. 332-338
Author(s):  
Luciano B. Silva ◽  
Alexandrino P. dos Santos Neto ◽  
Sandra M.A.S. Maia ◽  
Carolina dos Santos Guimarães ◽  
Iliana L. Quidute ◽  
...  

TNF-α is a member of the vast cytokine family being considered a proinflammatory substance produced many by macrophages and other cells belonging to the innate immunity, many of them classified as indeed Antigen Presenting Cells (APCs) involved in the complex chemotactic process of activation of the adaptive immunity. The aim of this work was to accomplish a literature review concerning the main pathologies that have TNF-α as a modulating agent in other to bring light to the main interactions present in the inflammation installed.

2020 ◽  
Vol 319 (3) ◽  
pp. G281-G288 ◽  
Author(s):  
Pasquale Mansueto ◽  
Diana Di Liberto ◽  
Francesca Fayer ◽  
Maurizio Soresi ◽  
Girolamo Geraci ◽  
...  

Nonceliac wheat sensitivity (NCWS) is a syndrome characterized by symptoms triggered by gluten intake. The pathogenesis is still uncertain. Studies have shown a role for innate immunity. We demonstrated that production of TNF-α by CD45+, CD3+, CD4+, and CD8+ cells and of IL-17 by CD4+ cells is higher in the rectal tissue of NCWS patients than in controls. We clearly demonstrated that in patients with NCWS there is a significant role for the adaptive response.


Cancer ◽  
2007 ◽  
Vol 109 (3) ◽  
pp. 556-565 ◽  
Author(s):  
Henry J.M.A.A. Zijlmans ◽  
Gert Jan Fleuren ◽  
Hans J. Baelde ◽  
Paul H.C. Eilers ◽  
Gemma G. Kenter ◽  
...  

2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Iuliia Peshkova ◽  
Aliia Fatkhullina ◽  
Ekaterina Koltsova

Atherosclerosis is a lipid-driven inflammatory disease characterized by the progressive plaque growth in the vessels. Cytokines are important mediators of inflammation and atherosclerosis. While pro-inflammatory cytokines were extensively investigated, little is known about the role of anti-inflammatory cytokines as to their ability to control vascular inflammation. We tested whether immunoregulatory IL-27R signaling is important to control inflammation in mouse models of atherosclerosis. We found that atherosclerosis-prone mice with hematopoietic deficiency of IL-27R ( Ldlr -/- mice reconstituted with bone marrow from Il27ra -/- ) or global deficiency ( Il27ra -/- x Apoe -/- ) developed significantly larger atherosclerotic lesions compared to controls. Atherosclerotic lesions in IL-27R deficient mice contained more CD45 + leukocytes and CD4 + T cells, which produced pro-atherogenic cytokines IL-17A and TNF-α. These cytokines normally suppressed by IL-27, regulated the expression of CCL2 and other chemokines, which in turn led to accumulation of myeloid CD11b + and CD11c + cells in atherosclerotic aortas. Using two-photon microscopy, we found enhanced interactions between antigen presenting cells and T cells in the aortas of IL-27R deficient mice accompanied by enhanced CD4 T cell proliferation. Moreover, macrophages in Il27ra -/- aortas also demonstrated enhanced ability to produce pro-inflammatory cytokines, including IL-1. The blockade of IL-1R signaling, however, strongly suppressed atherosclerosis progression in IL-27R deficient but not control mice, suggesting an important role of IL-27 in the regulation of IL-1 production in atherosclerosis. Overall, our data demonstrate that IL-27R signaling in atherosclerosis is required to control function of antigen presenting cells modulating subsequent T cell activation in the aortas. Moreover, it controls macrophage activation and pro-inflammatory myeloid cell-derived cytokine production. These mechanisms altogether curb pathogenic T cell lineage differentiation and, thus, atherosclerosis, suggesting potent anti-atherogenic role of IL-27.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1317 ◽  
Author(s):  
Alba Martínez ◽  
Cristina Bono ◽  
Daniel Gozalbo ◽  
Helen S. Goodridge ◽  
M. Luisa Gil ◽  
...  

Microbial recognition by pattern recognition receptors (PRRs) expressed on hematopoietic stem and progenitor cells (HSPCs) not only activates myelopoiesis but also programs the function of the monocytes and macrophages they produce. For instance, changes in HSPC programming modify the ability of macrophages derived from them to produce inflammatory cytokines. While HSPCs exposed to a TLR2 agonist give rise to tolerized macrophages (lower proinflammatory cytokine production), HSPCs treated with Dectin-1 ligands produce trained macrophages (higher proinflammatory cytokine production). However, nothing is known about the impact of HSPC exposure to microbes on the function of antigen presenting cells (APCs). In this study we evaluated whether treatment of murine bone marrow HSPCs with a TLR2 or Dectin-1 ligand impacts the antigen presenting capacity of APCs derived from them in vitro. Following activation with microbial ligands or Candida albicans yeasts, APCs derived from TLR2/Dectin-1-programed HSPCs exhibit altered expression of MHCII (signal 1), co-stimulatory molecules (CD40, CD80 and CD86; signal 2) and cytokines (TNF-α, IL-6, IL-12 p40 and IL-2; signal 3). Moreover, APCs derived from TLR2/Dectin-1-programed HSPCs prime enhanced Th1 and Th17 responses, which are important for antifungal defense, in CD4 T cell cocultures. Overall, these results demonstrate for the first time that microbial detection by bone marrow HSPCs can modulate the adaptive immune response by inducing the production of APCs with an altered phenotype.


Sign in / Sign up

Export Citation Format

Share Document