Structural and Thermal Study of Mg2TiO4 Nanoparticles Synthesized by Mechanical Alloying Method

2020 ◽  
Vol 12 (2) ◽  
pp. 87-91
Author(s):  
Ranjan K. Bhuyan ◽  
D. Pamu ◽  
Basanta K. Sahoo ◽  
Ashish K. Sarangi

Background: Mg2TiO4 – based ceramics have proven their potentiality in the field of wireless communication systems. In the past, Mg2TiO4 ceramics was considered a quite optical response material in thin film form. Moreover, there is very few studies have been done whatever the proposed work in the present study. Objective: To prepare Mg2TiO4 nano-powders with the help of High Energy Ball Mill (HEBM) and intend to investigate its effect on crystal structure, microstructure and on thermodynamic behavior of MgO-TiO2 system. Methods: Mg2TiO4 ceramics were synthesized using Mechanical alloying method from high- purity oxides MgO and TiO2 (99.99%) of Sigma Aldrich (St. Louis, MO). Results: From the experimental studies it is observed that the powder’s particle size decreases with an increase of milling time. XRD analysis is carried out for phase confirmation of the mixed Mg2TiO4 powder. Further, the result also showed that there is structural changes occurred in the sample by high energy ball milling process, milled at different times. The nanocrystalline nature Mg2TiO4 powder was confirmed from microstructure taken by Field Emission Scanning Electron Microscopy (FE-SEM) and Transmission Electron Microscopy (TEM). Further, differential thermal gravimetric analysis has been carried out to investigate the thermal behavior of milled Mg2TiO4 -powder (35 hours). Conclusion: In work, the effect of mechanical alloying on structural, microstructural and thermal properties of nanocrystalline Mg2TiO4 powders has been investigated systematically. The effect of milling time on particle size, crystal structure and the microstructure was studied using XRD, FE-SEM, TEM and DSC/TGA analysis. The microstructural analysis (FE-SEM and TEM) reveals the nanocrystallinity nature of MTO ceramics prepared by mechanical alloying method. The thermal decomposition behavior of the milled powders was examined by a Thermo-Gravimetric Analyzer (TGA) in argon atmosphere.

Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1225
Author(s):  
Cristina García-Garrido ◽  
Ranier Sepúlveda Sepúlveda Ferrer ◽  
Christopher Salvo ◽  
Lucía García-Domínguez ◽  
Luis Pérez-Pozo ◽  
...  

In this work, a blend of Ti, Nb, and Mn powders, with a nominal composition of 15 wt.% of Mn, and balanced Ti and Nb wt.%, was selected to be mechanically alloyed by the following two alternative high-energy milling devices: a vibratory 8000D mixer/mill® and a PM400 Retsch® planetary ball mill. Two ball-to-powder ratio (BPR) conditions (10:1 and 20:1) were applied, to study the evolution of the synthesized phases under each of the two mechanical alloying conditions. The main findings observed include the following: (1) the sequence conversion evolved from raw elements to a transitory bcc-TiNbMn alloy, and subsequently to an fcc-TiNb15Mn alloy, independent of the milling conditions; (2) the total full conversion to the fcc-TiNb15Mn alloy was only reached by the planetary mill at a minimum of 12 h of milling time, for either of the BPR employed; (3) the planetary mill produced a non-negligible Fe contamination from the milling media, when the highest BPR and milling time were applied; and (4) the final fcc-TiNb15Mn alloy synthesized presents a nanocrystalline nature and a partial degree of amorphization.


2009 ◽  
Vol 83-86 ◽  
pp. 764-770
Author(s):  
Taha Rostamzadeh ◽  
H. Shahverdi ◽  
R. Sarraf-Mamoory ◽  
A. Shanaghi

Mechanical alloying is one of the most successful methods for the manufacturing of metal matrix nanocomposite powders. In this study, Al/SiC metal matrix composite (MMCp) powders with volume fractions of 5, 10, and 15 percent SiC were successfully obtained after milling the powder for a period of 25 hours at a ball to powder ratio of 15:1 using high energy planetary milling. The Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses were conducted to investigate the lattice strain of the matrix phase and the microstructure of the nanocomposite powders after 1, 10, and 25 hours of milling time. Also, the morphology of the Al-5%SiC nanocomposite powder was investigated using transmission electron microscopy (TEM). The results show that with the increase of both milling time and the reinforcement phase volume fraction, the lattice strain increases and the average size of aluminum phase crystallites decreases. Eventually, after 25 hours of milling, the nanocomposite powders show a spherical-like morphology and SiC particles were distributed in an aluminum matrix with appropriate order.


2007 ◽  
Vol 353-358 ◽  
pp. 1625-1628 ◽  
Author(s):  
Gen Shun Ji ◽  
Qin Ma ◽  
Tie Ming Guo ◽  
Qi Zhou ◽  
Jian Gang Jia ◽  
...  

The high energy ball milling of Ni-50 atom % Si elemental powder mixtures was carried out using a planetary mill. X-ray diffraction (XRD) was used to identify the phase evolutions during the high energy ball milling period. The microstructure morphology of the powders milled different time was determined by field emission scanning electron microscope (FESEM). The beginning time of mechanical alloying was determined by back scattered electrons (BSE) images. The XRD patterns showed that the nickel peaks intensity and the silicon peaks intensity obviously decreased with milling time increased to 1 hour. BSE images revealed that nickel and silicon powders were not blended uniformly for 1 hour of milling. It was found that NiSi formed as the milling time increased to 5 hours, simultaneously, the nickel peaks and the silicon peaks almost disappeared. That means the obvious mechanical alloying started from 5 hours of milling. BSE images agreed with the result analyzed from XRD patterns. With the milling time further increased from 10 to 75 hours, the NiSi peaks decreased gradually, at the same time, the Ni2Si peaks appeared and then increased gradually.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 587 ◽  
Author(s):  
Marczewski ◽  
Miklaszewski ◽  
Maeder ◽  
Jurczyk

Titanium β-type alloys are preferred biomaterials for hard tissue replacements due to the low Young modulus and limitation of harmful aluminum and vanadium present in the commercially available Ti6Al4V alloy. The aim of this study was to develop a new ternary Ti-Zr-Nb system at 36≤Ti≤70 (at. %). The technical viability of preparing Ti-Zr-Nb alloys by high-energy ball-milling in a SPEX 8000 mill has been studied. These materials were prepared by the combination of mechanical alloying and powder metallurgy approach with cold powder compaction and sintering. Changes in the crystal structure as a function of the milling time were investigated using X-ray diffraction. Our study has shown that mechanical alloying supported by cold pressing and sintering at the temperature below α→β transus (600°C) can be applied to synthesize single-phase, ultrafine-grained, bulk Ti(β)-type Ti30Zr17Nb, Ti23Zr25Nb, Ti30Zr26Nb, Ti22Zr34Nb, and Ti30Zr34Nb alloys. Alloys with lower content of Zr and Nb need higher sintering temperatures to have them fully recrystallized. The properties of developed materials are also engrossing in terms of their biomedical use with Young modulus significantly lower than that of pure titanium.


2021 ◽  
Vol 876 ◽  
pp. 7-12
Author(s):  
Petr Urban ◽  
Fátima Ternero Fernández ◽  
Rosa M. Aranda Louvier ◽  
Raquel Astacio López ◽  
Jesus Cintas Físico

The effect of milling time on the microstructure evolution and formation of amorphous phase of Ti60Si40 alloy produced by mechanical alloying (MA) has been investigated. Laser diffraction, Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and Differential Scanning Calorimetry (DSC) were employed to characterize the particle size, morphology and structure of mechanically alloyed Ti60Si40. When the milling time is increased to 20 h, the particle size decreases from 23.7 to 4.7 μm, the shape of the particles changes to spherical and the crystalline structure is transformed into an amorphous phase. The amorphous Ti60Si40 alloy is stable when heating up to 750oC. Above this temperature, the cold crystallization of the intermetallic compounds Ti5Si3 and/or Ti5Si4 begins.


2012 ◽  
Vol 730-732 ◽  
pp. 739-744 ◽  
Author(s):  
Petr Urban ◽  
Francisco Gomez Cuevas ◽  
Juan M. Montes ◽  
Jesus Cintas

The amorphization process by mechanical alloying in the Fe-Si alloy system has been studied. High energy ball milling has been applied for alloys synthesis. X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to monitor the structural and phase transformations through the different stages of milling. The addition of amorphous boron in the milling process and the increase of the milling time were used to improve the formation of the amorphous phase. Heating the samples resulted in the crystallization of the synthesized amorphous alloys and the appearance of equilibrium intermetallic compounds.


2018 ◽  
Vol 54 ◽  
pp. 136-145
Author(s):  
A. El Mohri ◽  
M. Zergoug ◽  
K. Taibi ◽  
M. Azzaz

Nanocrystalline Fe90Mg10 alloy samples were prepared by mechanical alloying process using planetary high energy ball mill. The prepared powders were characterized using differential thermal analysis (DTA), X-ray diffraction technique (XRD) at high temperature, transmission electron microscopy (TEM), and the vibrating sample magnetometer (VSM). Obtained results are discussed according to milling time. XRD at high temperature results also indicated that when the milling time increases, the lattice parameter and the mean level of grain size increase, whereas the microstrains decrease. The result of the observation by the TEM of the Fe-Mg powders prepared in different milling time, coercive fields derived and Saturation magnetization derived from the hysteresis curves in high temperature are discussed as a function of milling time.


2018 ◽  
Vol 941 ◽  
pp. 1990-1995
Author(s):  
Naidu V. Seetala ◽  
Cyerra L. Prevo ◽  
Lawrence E. Matson ◽  
Thomas S. Key ◽  
Ilseok I. Park

ZrB2 and HfB2 with incorporation of SiC are being considered as structural materials for elevated temperature applications. We used high energy ball milling of micron-size powders to increase lattice distortion enhanced inter-diffusion to get uniform distribution of SiC and reduce grain growth during Spark Plasma Sintering (SPS). High-energy planetary ball milling was performed on ZrB2 or HfB2 with 20vol% SiC powders for 24 and 48 hrs. The particle size distribution and crystal micro-strain were examined using Dynamic Light Scattering Technique and x-ray diffraction (XRD), respectively. XRD spectra were analyzed using Williamson-Hall plots to estimate the crystal micro-strain. The particle size decreased, and the crystal micro-strain increased with the increasing ball milling time. The SPS consolidation was performed at 32 MPa and 2,000°C. The SEM observation showed a tremendous decrease in SiC segregation and a reduction in grain size due to high energy ball milling of the precursor powders. Flexural strength of the SPS consolidated composites were studied using Four-Point Bend Beam test, and the micro-hardness was measured using Vickers micro-indenter with 1,000 gf load. Good correlation is observed in SPS consolidated ZrB2+SiC with increased micro-strain as the ball milling time increased: grain size decreased (from 9.7 to 3.2 μm), flexural strength (from 54 to 426 MPa) and micro-hardness (from 1528 to 1952 VHN) increased. The correlation is less evident in HfB2+SiC composites, especially in micro-hardness which showed a decrease with increasing ball milling time.


2013 ◽  
Vol 829 ◽  
pp. 747-751 ◽  
Author(s):  
Sedigheh Rashidi ◽  
Abolghasem Ataie

In this study, cobalt ferrite (CoFe2O4) nanoparticles were synthesized by intensive mechanical alloying of CoCO3 and α-Fe2O3 powder using a planetary high energy ball mill in air without any subsequent heat treatment. Effects of milling time on the phase composition, morphology and magnetic properties of the powders were evaluated using XRD, FESEM and VSM techniques, respectively. XRD results indicated that single phase CoFe2O4 nanoparticles with a mean crystallite size of 15 nm were synthesized after 25 hours of mechanical milling. FESEM images confirmed the formation of uniform nanoparticles and showed that the mean particle size of the milling products was decreased from 51 to 25 nm by increasing the milling time from 20 to 30 hours. VSM measurements of the sample milled for 25 hours revealed a saturation magnetization (Ms) of 52.19 emu/g and coercivity (Hc) of 831.95 Oe, which were higher than those of 20 hours milled sample.


2013 ◽  
Vol 750-752 ◽  
pp. 752-755
Author(s):  
C.J. Li ◽  
Q.X. Zhang ◽  
Q. Yuan ◽  
J. Tan ◽  
L. Teng ◽  
...  

Nanocrystalline Cu90Nb10 alloy was produced by high energy ball milling mechanical alloying (MA). The effects of ball milling time on the microstructure and mechanical property of this alloy in the process of MA were investigated. The results show: up to 10 at.% Nb could be dissolved into Cu matrix by MA; the powder particles became compacted and homogeneous with increasing the ball milling time, and the deformation degree also increased synchronously; the grain size of this alloy was refined gradually, and it reached the minimum value of 11.5 nm after 30h milling; the microhardness of this alloy increased with increasing the milling time, and it obtained the maximum value of 328 Hv after 30h milling. The obvious reinforcement of this alloy may be due to the comprehensive effects of the fine grain strengthening, the solid solution strengthening and the strain strengthening.


Sign in / Sign up

Export Citation Format

Share Document